【BZOJ 3470】3470: Freda’s Walk 期望
3470: Freda’s Walk
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 42 Solved: 22Description
雨后的Poetic Island空气格外清新,于是Freda和Rainbow出来散步。 Poetic Island的交通可以看作一张n个点、m 边的有向无环图。由于刚下过雨,每条边都有一个积水深度,而恰好Freda 和Rainbow都喜欢踩水玩儿,于是Ta们从某个点出发,选择走向哪条边的概率与该边的积水深度是成正比的。即:如果Freda和Rainbow现在在点u,点u 出发的所有边的积水深度之和为s,从u到v的边积水深度为w,那么Ta们选择走向v的概率就是 w/s。
Ta们会一直走下去,直到到达一个没有出边的点,那么散步的路程长度就是走过的边的数量。更特殊的是,Freda和Rainbow在出发之前还可以选择一条边,在散步过程中无视这条边的存在(当然也可以不选择)。请你帮忙计算一下,Ta 们从0号点出发,散步的路程长度的期望值最大是多少?Input
第一行两个正整数 n、m。
接下来m行每行三个整数u、v、w,表示从u到v有一条无向边,积水深度为w。Output
输出Freda和Rainbow散步的路程长度的最大期望值,四舍五入保留六位小数。
Sample Input
4 5
0 1 2
0 2 1
0 3 3
1 3 1
2 3 4Sample Output
2.000000HINT
对于 100% 的数据,2<=n<=10000,1<=m<=100000,0<=u,v<n,1<=w<=1000。
Source
【分析】
测试考这题。。错误打法 考场上竟然AC了【黑人问号脸??
也算给自己提个醒吧,DAG和树终究是不一样的。不能f[i][0]和f[i][1]表示后面割还是没割,比如:
割3后面那条边是f[2][1]和f[3][1],但是不会让他们转移到f[1][1],因为你规定只有一个儿子可以选割,但是是可以的,因为只是个割了3下面那条边。。
所以这个方法不行。
考虑割一条边对答案的影响。
假设割x->y,只会影响f[x]以及1到x路径上的点。
但是我们只需要知道x的f值的改变对1这个点的f值的影响。
假设从1走到x的概率是p,假设那么f[1]会增加(f[x]'-f[x])*p,直接枚举割哪条边然后计算出这个求max就好了。
【ORZORZORZ...
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define Maxn 100010
#define Maxm 1000010 struct node
{
int x,y,c,next,p;
}t[Maxm],tt[Maxm];
int first[Maxn],len;
int d[Maxn]; int ft[Maxn];
void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=c;
t[len].next=first[x];first[x]=len;t[len].p=;
tt[len].x=y;tt[len].y=x;tt[len].c=c;tt[len].next=ft[y];ft[y]=len;
} bool vis[Maxn];
double g[Maxn];
void dfs2(int x)
{
if(vis[x]) return;vis[x]=;
if(x==) {g[x]=;return;}
for(int i=ft[x];i;i=tt[i].next)
{
int y=tt[i].y;
dfs2(y);
g[x]+=g[y]*tt[i].c*1.0/d[y];
}
} double f[Maxn];
void dfs(int x)
{
if(vis[x]) return;vis[x]=;
f[x]=;
for(int i=first[x];i;i=t[i].next) if(t[i].p)
{
int y=t[i].y;
dfs(y);
f[x]+=(f[y]+)*t[i].c*1.0/d[x];
}
return;
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
len=;
memset(first,,sizeof(first));
memset(ft,,sizeof(ft));
for(int i=;i<=m;i++)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
x++;y++;
d[x]+=c;
ins(x,y,c);
}
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++) g[i]=;
for(int i=;i<=n;i++) dfs2(i);
memset(vis,,sizeof(vis));
dfs();
double mx=f[];
for(int i=;i<=len;i++)
{
int x=t[i].x,y=t[i].y;
double ad;
if(d[x]!=t[i].c) ad=(f[x]*d[x]*1.0/(d[x]-t[i].c)-(f[y]+)*t[i].c*1.0/(d[x]-t[i].c))-f[x];
else ad=-f[x];
mx=max(mx,f[]+g[x]*ad);
}
printf("%.6lf\n",mx);
return ;
}
2017-04-24 18:51:22
【BZOJ 3470】3470: Freda’s Walk 期望的更多相关文章
- 【BZOJ3470】Freda’s Walk 概率与期望
[BZOJ3470]Freda’s Walk Description 雨后的Poetic Island空气格外清新,于是Freda和Rainbow出来散步. Poetic Island的交通可以看作一 ...
- bzoj 3470: Freda’s Walk【拓扑排序+期望dp】
dfs会T,只好正反两遍拓扑了-- #include<iostream> #include<cstdio> #include<queue> #include< ...
- [BZOJ3470]Freda’s Walk
bzoj description 雨后的Poetic Island空气格外清新,于是Freda和Rainbow出来散步. Poetic Island的交通可以看作一张\(n\)个点.\(m\)边的有向 ...
- bzoj 1419 Red is good(期望DP)
[题意] R红B蓝,选红得1选蓝失1,问最优状态下的期望得分. [思路] 设f[i][j]为i个Rj个B时的最优期望得分,则有转移式为: f[i][j]=max{ 0,(f[i-1][j]+1)*(i ...
- BZOJ 3036: 绿豆蛙的归宿( 期望dp )
从终点往起点倒推 . 在一个图 考虑点 u , 出度为 s : s = 0 , d[ u ] = 0 ; s ≠ 0 , 则 d( u ) = ( ∑ d( v ) ) / s ( ( u , v ) ...
- bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]
4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...
- BZOJ 1076: [SCOI2008]奖励关 [DP 期望 状压]
传送门 题意:$n$种宝物,出现$k$次每次一种,每种宝物有价值和吃掉它之前必须要吃掉的宝物的集合,求采取最优策略的期望最大价值 1<=k<=100,1<=n<=15,分值为[ ...
- BZOJ 3091: 城市旅行 [LCT splay 期望]
3091: 城市旅行 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1454 Solved: 483[Submit][Status][Discuss ...
- bzoj 1076 奖励关 状压+期望dp
因为每次选择都是有后效性的,直接dp肯定不行,所以需要逆推. f[i][j]表示从第i次开始,初始状态为j的期望收益 #include<cstdio> #include<cstrin ...
随机推荐
- 【蓝桥杯单片机12】实时时钟DS1302的基本操作
[蓝桥杯单片机12]实时时钟DS1302的基本操作 广东职业技术学院 欧浩源 实时时钟DS1302几乎是蓝桥杯“单片机设计与开发”每年必考的内容,虽然在竞赛现场有提供一个底层读写寄存器的库文件,但是作 ...
- 图片压缩-KMeans
下面给大家一起分享使用KMeans自动聚类,压缩图片像素点.每种图片可能他们的维度都不同,比如jpg一共有(w,h,3)三维,但是灰度图只有一维(w,h,1),也有四维的图片(w,h,4)等等.我们可 ...
- D - Doing Homework HDU - 1074 (状压dp)
题目链接:https://cn.vjudge.net/contest/68966#problem/D 具体思路:我们可以把每个情况都枚举出来,然后用递归的形式求出最终的情况. 比如说 我们要求 10 ...
- halcon发布
1: halcon发布 : 在MFC程序中 添加 #include "include/halcon/cpp/HalconCpp.h"using namespace Halcon;# ...
- mysql 增加字段脚本,以及删除主键约束的脚本,存储过程
//增加一个库下面所有表的row_id和其他9个字段的存过 DELIMITER $$ USE `erptest`$$ DROP PROCEDURE IF EXISTS `UPTABLE`$$ CREA ...
- 洛谷 P4175: bzoj 1146: [CTSC2008]网络管理
令人抓狂的整体二分题.根本原因还是我太菜了. 在学校写了一个下午写得头晕,回家里重写了一遍,一个小时就写完了--不过还是太慢. 题目传送门:洛谷P4175. 题意简述: 一棵 \(n\) 个结点的树, ...
- 【codeforces】【比赛题解】#855 Codefest 17
神秘比赛,以<哈利波特>为主题……有点难. C题我熬夜切终于是写出来了,可惜比赛结束了,气啊. 比赛链接:点我. [A]汤姆·里德尔的日记 题意: 哈利波特正在摧毁神秘人的分灵体(魂器). ...
- javascript中用闭包递归遍历树状数组
做公司项目时,要求写一个方法,方法的参数为一个菜单数组集合和一个菜单id,菜单数组的格式为树状json,如下面所示: [{"id":28,"text":&quo ...
- 列表选择Spinner
1.只用XML配置来显示列表 在res\values中添加一个arrays.xml 1 <?xml version="1.0" encoding="utf-8&qu ...
- QUnit 实践一
项目准备启用Qunit, 先来尝试一下. 不说废话,上代码: <!DOCTYPE HTML> <html> <head> <meta http-equiv=& ...