[SDOI2016 Round1] 数字配对
COGS 2221. [SDOI2016 Round1] 数字配对
http://www.cogs.pro/cogs/problem/problem.php?pid=2221
★★★ 输入文件:menci_pair.in
输出文件:menci_pair.out
简单对比
时间限制:1 s 内存限制:128 MB
【题目描述】
有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。
若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 aiaj 是一个质数,那么这两个数字可以配对,并获得 ci×cj 的价值。
一个数字只能参与一次配对,可以不参与配对。
在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。
【输入格式】
第一行一个整数 n。
第二行 n 个整数 a1、a2、……、an。
第三行 n 个整数 b1、b2、……、bn。
第四行 n 个整数 c1、c2、……、cn。
【输出格式】
一行一个数,最多进行多少次配对。
【样例输入】
3
2 4 8
2 200 7
-1 -2 1
【样例输出】
4
【提示】
测试点 1 ~ 3:n≤10,ai≤109,bi=1,∣ci∣≤105;
测试点 4 ~ 5:n≤200,ai≤109,bi≤105,ci=0;
测试点 6 ~ 10:n≤200,ai≤109,bi≤105,∣ci∣≤105。
【来源】
SDOI2016 Round1 Day1
费用流u
构图方法:(以样例为例)
1、2可以配对;2、3可以配对
注意,这里若a与b可以配对,则既要由a向b连边,又要由b向a连同样的边,最后答案除以2
原因:
1、如果只由a向b连,那么如果又有一条边由c连向a,边流量都为inf,这样从源点向a用了,由a向汇点又用了,应该统计的是2次之和,但实际只统计了其中一次
2、a向b连边m、b向a连同样的边n,这样费用流跑m一定跑n,这样就可以把1中2次汇总,因为对应边流量相等,所以答案要除2
因为要总价值和>=0,所以每次跑最大费用,
如果本次跑出的最大价值+已累积的价值>=0,继续跑
反之,次数+已累计价值/-本次单位流量最大费用,结束
因为累计价值不可能为负,而题目要求总价值和>=0,若满足反之条件,本次最大费用<0 且 本次最大费用总和绝对值>已累计价值,所以就看已累计价值最大能抵消多少次本次的负价值
#include<cstdio>
#include<queue>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int a[],b[],c[];
int tot=,src,dec;
int front1[],from[],next1[],to1[];
bool v[];
int n,fa[];
long long dis[],sum_cost,cost[],cap[];
int sum_flow;
queue<int>que;
bool judge(int x)
{
for(int i=;i<=sqrt(x);i++)
if(x%i==) return false;
return true;
}
void insert_edge(int u,int v,long long w,long long val)
{
to1[++tot]=v;from[tot]=u;next1[tot]=front1[u];front1[u]=tot;cap[tot]=w;cost[tot]=val;
to1[++tot]=u;from[tot]=v;next1[tot]=front1[v];front1[v]=tot;cap[tot]=;cost[tot]=-val;
}
bool spfa()
{
for(int i=;i<=dec;i++) dis[i]=-1e15,fa[i]=;
memset(v,,sizeof(v));
que.push(src);v[src]=true;
dis[]=;
while(!que.empty())
{
int now=que.front();
que.pop();v[now]=false;
for(int i=front1[now];i;i=next1[i])
{
if(dis[now]+cost[i]>dis[to1[i]]&&cap[i]>)
{
dis[to1[i]]=dis[now]+cost[i];
fa[to1[i]]=i;
if(!v[to1[i]])
{
que.push(to1[i]);
v[to1[i]]=true;
}
}
}
}
if(dis[dec]!=-1e10) return true;
return false;
}
void work()
{
while(spfa())
{
long long tmp=1e15,k=;
for(int i=fa[dec];i;i=fa[from[i]]) tmp=min(cap[i],tmp);
if(sum_cost+dis[dec]*1ll*tmp>=)
{
sum_cost+=dis[dec]*tmp;sum_flow+=tmp;
for(int i=fa[dec];i;i=fa[from[i]])
{
cap[i]-=tmp;cap[i^]+=tmp;
}
}
else
{
sum_flow+=int(sum_cost/abs(dis[dec]));
break;
}
}
printf("%d",sum_flow/);
return ;
}
int main()
{
freopen("menci_pair.in","r",stdin);
freopen("menci_pair.out","w",stdout);
scanf("%d",&n);
dec=n+<<;
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++) scanf("%d",&b[i]);
for(int i=;i<=n;i++) scanf("%d",&c[i]);
for(int i=;i<=n;i++) insert_edge(src,i<<,b[i],);
for(int i=;i<=n;i++) insert_edge(i<<|,dec,b[i],);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(a[i]<=a[j]) continue;
if(a[i]%a[j]==&&judge(a[i]/a[j]))
{
insert_edge(j<<,i<<|,1e15,1ll*c[i]*c[j]);
insert_edge(i<<,j<<|,1e15,1ll*c[i]*c[j]);
} }
work();
}
学长说了另外2种方法:
1、根据分解质因数的指数和的奇偶性,将所有点分为2个集合,构建二分图(标解,不想写就没写)
学长AC代码链接:http://www.cnblogs.com/harden/p/6399396.html
2、根据整除关系构成的链,将所有点分为2个集合,每条链的起点在哪个集合里随便,构建二分图,与1不同的地方就是链的起点在哪个集合的问题
(这个写了,然而调了一晚上+半上午,COGS提交最终3A 1W 1RE 5T ,法2正确性、代码正确性有待验证)
#include<cstdio>
#include<queue>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int a[201],b[201],c[201];
int front[210],next[160001],to[160001],tot,src,dec;
int front1[210],from[160001],next1[160001],to1[160001];
bool use_in[210],use_out[210],v[210];
int n,fa[210];
long long dis[210],sum_cost,cost[160001],cap[160001];
int sum_flow;
struct node1
{
int point,id;
};
queue<node1>q;
queue<int>que;
bool judge(int x)
{
for(int i=2;i<=sqrt(x);i++)
if(x%i==0) return false;
return true;
}
void add(int u,int v)
{
to[++tot]=v;next[tot]=front[u];front[u]=tot;
use_in[v]=true;use_out[u]=true;
}
void insert_edge(int u,int v,long long w,long long val)
{
to1[++tot]=v;from[tot]=u;next1[tot]=front1[u];front1[u]=tot;cap[tot]=w;cost[tot]=val;
to1[++tot]=u;from[tot]=v;next1[tot]=front1[v];front1[v]=tot;cap[tot]=0;cost[tot]=-val;
}
bool spfa()
{
for(int i=1;i<=dec;i++) dis[i]=-1e15,fa[i]=0;
que.push(src);v[src]=true;
while(!que.empty())
{
int now=que.front();
que.pop();v[now]=false;
for(int i=front1[now];i;i=next1[i])
{
if(dis[now]+1ll*cost[i]>dis[to1[i]]&&cap[i]>0)
{
dis[to1[i]]=dis[now]+1ll*cost[i];
fa[to1[i]]=i;
if(!v[to1[i]])
{
que.push(to1[i]);
v[to1[i]]=true;
}
}
}
}
if(dis[dec]!=-1e15) return true;
return false;
}
void work()
{
while(spfa())
{
long long tmp=1e15;
for(int i=fa[dec];i;i=fa[from[i]]) tmp=min(cap[i],tmp);
if(sum_cost+dis[dec]*1ll*tmp>=0)
{
sum_cost+=dis[dec]*tmp;sum_flow+=tmp;
for(int i=fa[dec];i;i=fa[from[i]])
{
cap[i]-=tmp;cap[i^1]+=tmp;
}
}
else
{
sum_flow+=int(sum_cost/abs(dis[dec]));
break;
}
}
printf("%d",sum_flow);
return ;
}
int main()
{
freopen("menci_pair.in","r",stdin);
freopen("menci_pair.out","w",stdout);
scanf("%d",&n);
dec=n+1;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) scanf("%d",&b[i]);
for(int i=1;i<=n;i++) scanf("%d",&c[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(a[i]<=a[j]) continue;
if(!a[j]) continue;
if(a[i]%a[j]==0&&judge(a[i]/a[j]))
{
add(j,i);
}
}
tot=1;
for(int i=1;i<=n;i++)
if(!use_in[i])
{
insert_edge(src,i,b[i],0);
q.push((node1){i,1});
}
while(!q.empty())
{
node1 now=q.front();q.pop();
for(int i=front[now.point];i;i=next[i])
{
int t=to[i];
if(now.id%2)
{
insert_edge(now.point,t,1e15,1ll*c[now.point]*c[t]);
insert_edge(t,dec,b[t],0);
q.push((node1){t,now.id+1});
}
else
{
insert_edge(t,now.point,1e15,1ll*c[now.point]*c[t]);
insert_edge(src,t,b[t],0);
q.push((node1){t,now.id+1});
}
}
}
work();
}
错误代码
[SDOI2016 Round1] 数字配对的更多相关文章
- Cogs 2221. [SDOI2016 Round1] 数字配对(二分图)
[SDOI2016 Round1] 数字配对 ★★★ 输入文件:menci_pair.in 输出文件:menci_pair.out 简单对比 时间限制:1 s 内存限制:128 MB [题目描述] 有 ...
- cogs 2221. [SDOI2016 Round1] 数字配对
★★ 输入文件:pair.in 输出文件:pair.out 简单对比 时间限制:1 s 内存限制:128 MB [题目描述] 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两 ...
- 「SDOI2016」数字配对
「SDOI2016」数字配对 题目大意 传送门 题解 \(a_i\) 是 \(a_j\) 的倍数,且 \(\frac{a_i}{a_j}\) 是一个质数,则将 \(a_i,a_j\) 质因数分解后,其 ...
- 【BZOJ4514】【SDOI2016】数字配对 [费用流]
数字配对 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 有 n 种数字,第 i 种数字是 ...
- [SDOI2016][bzoj4514] 数字配对 [费用流]
题面 传送门 思路 一个数字能且只能匹配一次 这引导我们思考:一次代表什么?代表用到一定上限(b数组)就不能再用,同时每用一次会产生价值(c数组) 上限?价值?网络流! 把一次匹配设为一点流量,那产生 ...
- 【LOJ】#2031. 「SDOI2016」数字配对
题解 这个图是个二分图,因为如果有一个奇环的话,我们会发现一个数变成另一个数要乘上个数不同的质数,显然不可能 然后我们发现这个不是求最大流,而是问一定价值的情况下最大流是多少,二分一个流量,加上一条边 ...
- loj2031 「SDOI2016」数字配对
跑最大费用最大流,注意到每次 spfa 出来的 cost 一定是越来越少的,啥时小于 \(0\) 了就停了吧. #include <iostream> #include <cstri ...
- 图论(费用流):BZOJ 4514 [Sdoi2016]数字配对
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 820 Solved: 345[Submit][Status ...
- BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]
4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...
随机推荐
- beta冲刺(7/7)
目录 组员情况 组员1:胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:恺琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:何宇恒 组员11:刘一好 展示组内最新 ...
- Unity发布Exe后,去掉提示分辨率的窗口
Unity版本:2017.4 菜单File->Build Settings...,修改如下图的位置,将“Display Resolution Dialog”从Enabled改为Disabled
- tomcat文件中server.xml 实例说明
<?xml version='1.0' encoding='utf-8'?> # 这是server类, 指定一个tomcat的应用实例 <Server port="80 ...
- beta阶段成果展示博客
跟着我们一一点一点揭开蒙娜丽莎的微笑 - 本次beta阶段之前,我们团队,对其他组在事后诸葛亮期间对我们的评价进行深刻的审视,特别是缺点方面,开了好几次的站立会议,专门讨论beta的主要方向和任务.最 ...
- PHP 多进程开发
pcntl_fork(); https://blog.csdn.net/wujiangwei567/article/details/77006724 https://blog.csdn.net/qq_ ...
- 安恒杯2月月赛-应该不是xss
1. 打开题目一看,是个留言板 2. 查看源码发现有几个js文件 依次打开发现在main.js里存在这样一段代码 3. 访问 /#login是登录的界面,/#chgpass是修改密码的界面,其中修改密 ...
- C++模板常用功能讲解
前言 泛型编程是C++继面向对象编程之后的又一个重点,是为了编写与具体类型无关的代码.而模板是泛型编程的基础.模板简单来理解,可以看作是用宏来实现的,事实上确实有人用宏来实现了模板类似的功能.模板,也 ...
- Windows下 OpenSSL的安装与简单使用
1. openssl的最新版本 最新版本是 openssl1.1.1 官方地址 https://www.openssl.org/source/ TLS1.3的协议(RFC8446)在2018.8.12 ...
- Qt Lighthouse学习(二),就是QPA(Qt Platform Abstraction) 项目的名字
上一次关注Qt Lighthouse是在6月初,可是现在都8月底了.时间真快... Lighthouse 是 QPA(Qt Platform Abstraction) 项目的名字,它使得将Qt移植到新 ...
- Day22-Django之Form组件验证
1. Django里面的Form专门用来做验证. 用Form创建一个类,把用户发来的数据放到request.POST里面发给这个类,这个类会帮忙做验证. 返回3个结果:是否验证成功了,所有的正确信息, ...