线段树维护区间前k小
线段树维护区间前k小

$ solution: $
觉得超级钢琴太麻烦?在这里线段树提供一条龙服务 。
咳咳,开始讲正题!这道题我们有一个和超级钢琴复杂度一样 $ O(\sum x\times logn)~ $ 的做法。因为线段数支持动态维护最小值,而取 $ max $ 操作我们可以用线段树的 $ lazytag $ 实现(不懂可以看看代码里的标记下传和区间修改)。所以我们主要目的就是输出区间前 $ x $ 小,这个其实我们可以用线段树的单点修改完成!
我们在区间 $ [l,r] $ 里面找最小值,假设其下标为 $ k $ 我们记录它的位置和它的权值。然后我们暂时将这个位置在线段树上用单点修改操作改成 $ inf $ ,这样我们就不会再将这个位置作为最小值。然后我们再在 $ [l,r] $ 中找一个最小值,这时我们可以找到另一个位置 $ k_2 $ ,然后重复给它变成 $ inf $ 的操作,并记录它的位置和权值。这样不断循环,当我们找完所有的区间前 $ x $ 小后。我们再用线段树的单点修改操作,将线段树上对应位置的值改回来!然后这题就做完了!
注意每一个最小值我们都要花 $ log $ 的时间查找,更改为 $ inf $ ,最后再改回来。 复杂度中有一定常数,但是算法只用了线段树,没有其它数据结构鱼龙混杂,跑起来效果还不错,当然重点是码量小一些!
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define rg register int
#define zuo k<<1,l,mid
#define you k<<1|1,mid+1,r
#define midd int mid=(l+r)>>1
#define pushd push(k,k<<1,k<<1|1)
using namespace std;
int n,m;
int x,y,v,t,sx,sv;
int as[500005];
inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar()))if(ch=='-')sign=1;
while(isdigit(ch))res=res*10+(ch^48),ch=getchar();
if(sign)return -res; else return res;
}
struct su{
int da,id;
inline void min(const su a){
if(a.da<da){da=a.da;id=a.id;}
}
}a[500005];
struct tree{
int da[500005<<4];
int lz[500005<<4];
inline void build(int k,int l,int r){ //建树
if(l==r){da[k]=qr(); return ;}
midd; build(zuo); build(you);
da[k]=min(da[k<<1],da[k<<1|1]);
}
inline void push(int k,int l,int r){ //下传标记
if(lz[k]>da[l]){
da[l]=max(da[l],lz[k]);
lz[l]=max(lz[l],lz[k]);
}
if(lz[k]>da[r]){
da[r]=max(da[r],lz[k]);
lz[r]=max(lz[r],lz[k]);
} lz[k]=0;
}
inline void add1(int k,int l,int r){ //区间取max
if(x<=l&&r<=y){
if(da[k]>=v)return ; //权值只增不降
da[k]=max(da[k],v);
lz[k]=max(lz[k],v);
return ;
}if(lz[k])pushd; midd;
if(x<=mid)add1(zuo);
if(y>mid) add1(you);
da[k]=min(da[k<<1],da[k<<1|1]);
}
inline void add2(int k,int l,int r){ //单点修改权值
if(l==r){da[k]=sv; return ;}
if(lz[k])pushd; midd;
if(sx<=mid) add2(zuo);
else add2(you);
da[k]=min(da[k<<1],da[k<<1|1]);
}
inline su ask(int k,int l,int r){ //询问区间里的最小值信息
if(l==r)return su{da[k],l};
if(lz[k])pushd; midd;
if(x<=l&&r<=y){ //注意我们要精确的找到最小值位置
if(da[k<<1]==da[k])return ask(zuo);
else return ask(you);
}
register su res; res.da=1e9; res.id=1001;
if(x<=mid)res=ask(zuo);
if(y>mid) res.min(ask(you));
return res;
}
}tr;
int main(){
n=qr(); tr.build(1,1,n); m=qr();
for(rg i=1;i<=m;++i){
rg f=qr(); x=qr(); y=qr(); v=qr();
if(f==1){ //区间修改
tr.add1(1,1,n);
} else{
t=qr(); //
for(rg j=1;j<=t;++j){
a[j]=tr.ask(1,1,n); //读取最小值位置及权值
if(a[j].da>=v){t=j;break;} //不符合题意
sx=a[j].id; sv=1e9; //让最小值消失
tr.add2(1,1,n); //让之前的最小值不再被选中
}
if(a[t].da>=v) printf("-1");
else for(rg j=1;j<=t;++j) printf("%d ",a[j].da);
for(rg j=1;j<=t;++j){
sx=a[j].id; sv=a[j].da; //将之前改的变回原值
tr.add2(1,1,n);
}puts("");
}
}
return 0;
}
线段树维护区间前k小的更多相关文章
- 主席树--动态区间第k小
主席树--动态区间第\(k\)小 模板题在这里洛谷2617. 先对几个问题做一个总结: 阅读本文需要有主席树的基础,也就是通过区间kth的模板题. 静态整体kth: sort一下找第k小,时间复杂度\ ...
- [csu/coj 1080]划分树求区间前k大数和
题意:从某个区间内最多选择k个数,使得和最大 思路:首先题目给定的数有负数,如果区间前k大出现负数,那么负数不选和更大,于是对于所有最优选择,负数不会出现,所以用0取代负数,问题便转化为区间的前k大数 ...
- POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 )
POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 ) 题意分析 给出n个点,m个询问,和当前位置pos. 先给出n-1条边,u->v以及边权w. 然后有m个询问 ...
- A - 低阶入门膜法 - K-th Number (主席树查询区间第k小)
题目链接:https://cn.vjudge.net/contest/284294#problem/A 题目大意:主席树查询区间第k小. 具体思路:主席树入门. AC代码: #include<i ...
- HDU 5919 - Sequence II (2016CCPC长春) 主席树 (区间第K小+区间不同值个数)
HDU 5919 题意: 动态处理一个序列的区间问题,对于一个给定序列,每次输入区间的左端点和右端点,输出这个区间中:每个数字第一次出现的位子留下, 输出这些位子中最中间的那个,就是(len+1)/2 ...
- Can you answer these queries V SPOJ - GSS5 (分类讨论+线段树维护区间最大子段和)
recursion有一个整数序列a[n].现在recursion有m次询问,每次她想知道Max { A[i]+A[i+1]+...+A[j] ; x1 <= i <= y1 , x2 &l ...
- CodeForces - 587E[线段树+线性基+差分] ->(线段树维护区间合并线性基)
题意:给你一个数组,有两种操作,一种区间xor一个值,一个是查询区间xor的结果的种类数 做法一:对于一个给定的区间,我们可以通过求解线性基的方式求出结果的种类数,而现在只不过将其放在线树上维护区间线 ...
- hdu_5726_GCD(线段树维护区间+预处理)
题目链接:hdu_5726_GCD 题意: 给你n个数(n<=1e5)然后m个询问(m<=1e5),每个询问一个区间,问你这个区间的GCD是多少,并且输出从1到n有多少个区间的GCD和这个 ...
- 滑动窗口(poj,线段树维护区间最值)
题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. 例如: The array i ...
随机推荐
- python使用内置方法和修饰器方法获取类名、函数名
1. 外部获取 从外部的情况好获取,可以使用指向函数的对象,然后用__name__属性. def a(): pass a.__name__ 或者 getattr(a,'__name__') 2. 内部 ...
- iOS证书详解
一.成员介绍1. Certification(证书)证书是对电脑开发资格的认证,每个开发者帐号有一套,分为两种:1) Developer Certification(开发证书)安装在电脑上 ...
- python读取文件时遇到非法字符的处理 UnicodeDecodeError: 'gbk' codec can't decode bytes in position
报错UnicodeDecodeError: 'gbk' codec can't decode bytes in position ipath = 'D:/学习/语料库/SogouC.mini/Samp ...
- FreeBSD上安装Cassandra 3.10
哈哈,你居然点进来了,来吧,一起吐槽FreeBSD啊,装了一上午Cassandra 3.10都没有装成功, 终于,鄙人一条 shutdown -p now 结束了FreeBSD,默默打开了CentOS ...
- 【命令汇总】Windows 应急响应
日期:2019-06-07 16:11:49 作者:Bay0net 介绍:Windows 应急响应.取证及溯源相关内容学习记录 0x00.前言 常见的应急分类: web入侵:网页挂马.主页篡改.Web ...
- PHP is_file() 函数
is_file() 函数检查指定的文件名是否是正常的文件. 语法is_file(file)参数 描述file 必需.规定要检查的文件.说明如果文件存在且为正常的文件,则返回 true. 提示和注释 注 ...
- CSS3 基础
style 标签 <style type="text/css"> h1 { font-size:12px; color:#F00; } </style> 行 ...
- 分类属性绘图(seaborn的catplot函数)
可以通过指定catplot()函数的kind参数为"bar", "box", "violin"等分别绘制以前提过的柱形图,盒图,小提琴图等. ...
- LeetCode链表简单题
一.21合并两个有序链表 代码如下: class Solution: def mergeTwoLists(self, l1: ListNode, l2: ListNode) -> ListNod ...
- Powershell 脚本输出前十条消耗内存的进程到excel
# create new excel instance $objExcel = New-Object -comobject Excel.Application $objExcel.Visible = ...