Pandas的高级操作
pandas数据处理
1. 删除重复元素
使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True
keep参数:指定保留哪一重复的行数据
创建具有重复元素行的DataFrame
import numpy as np
import pandas as pd
from pandas import DataFrame
# 创建一个df
df = DataFrame(data=np.random.randint(0,100,size=(12,7)))
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 18 | 75 | 98 | 68 | 33 | 35 | 15 |
1 | 48 | 71 | 36 | 34 | 41 | 17 | 46 |
2 | 3 | 28 | 81 | 21 | 86 | 53 | 85 |
3 | 15 | 35 | 35 | 90 | 63 | 83 | 14 |
4 | 12 | 36 | 65 | 79 | 25 | 53 | 95 |
5 | 98 | 63 | 4 | 58 | 35 | 64 | 80 |
6 | 31 | 61 | 23 | 33 | 80 | 53 | 60 |
7 | 52 | 47 | 60 | 58 | 54 | 35 | 17 |
8 | 7 | 92 | 42 | 61 | 31 | 40 | 56 |
9 | 76 | 45 | 30 | 42 | 74 | 83 | 53 |
10 | 69 | 2 | 89 | 99 | 12 | 51 | 62 |
11 | 17 | 86 | 1 | 76 | 40 | 34 | 41 |
# 手动将df的某几行设置成相同的内容
df.iloc[1] = [6,6,6,6,6,6,6]
df.iloc[8] = [6,6,6,6,6,6,6]
df.iloc[5] = [6,6,6,6,6,6,6]
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 18 | 75 | 98 | 68 | 33 | 35 | 15 |
1 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
2 | 3 | 28 | 81 | 21 | 86 | 53 | 85 |
3 | 15 | 35 | 35 | 90 | 63 | 83 | 14 |
4 | 12 | 36 | 65 | 79 | 25 | 53 | 95 |
5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
6 | 31 | 61 | 23 | 33 | 80 | 53 | 60 |
7 | 52 | 47 | 60 | 58 | 54 | 35 | 17 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
9 | 76 | 45 | 30 | 42 | 74 | 83 | 53 |
10 | 69 | 2 | 89 | 99 | 12 | 51 | 62 |
11 | 17 | 86 | 1 | 76 | 40 | 34 | 41 |
- 使用drop_duplicates()函数删除重复的行
- drop_duplicates(keep='first/last'/False)
df.drop_duplicates(keep='last') # 保留最后一个重复的行
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 26 | 9 | 31 | 11 | 38 | 46 | 22 |
2 | 89 | 24 | 53 | 28 | 64 | 89 | 40 |
3 | 7 | 80 | 43 | 91 | 32 | 95 | 6 |
4 | 96 | 92 | 58 | 55 | 82 | 73 | 21 |
6 | 43 | 1 | 13 | 54 | 24 | 34 | 43 |
7 | 75 | 32 | 88 | 85 | 40 | 29 | 41 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
9 | 93 | 3 | 62 | 4 | 60 | 51 | 78 |
10 | 58 | 11 | 63 | 42 | 62 | 30 | 10 |
11 | 89 | 93 | 96 | 49 | 23 | 40 | 57 |
2. 映射
1) replace()函数:替换元素
DataFrame替换操作
单值替换
- 普通替换: 替换所有符合要求的元素:to_replace=15,value='e'
- 按列指定单值替换: to_replace={列标签:替换值} value='value'
多值替换
- 列表替换: to_replace=[] value=[]
- 字典替换(推荐) to_replace={to_replace:value,to_replace:value}
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 26 | 9 | 31 | 11 | 38 | 46 | 22 |
1 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
2 | 89 | 24 | 53 | 28 | 64 | 89 | 40 |
3 | 7 | 80 | 43 | 91 | 32 | 95 | 6 |
4 | 96 | 92 | 58 | 55 | 82 | 73 | 21 |
5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
6 | 43 | 1 | 13 | 54 | 24 | 34 | 43 |
7 | 75 | 32 | 88 | 85 | 40 | 29 | 41 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
9 | 93 | 3 | 62 | 4 | 60 | 51 | 78 |
10 | 58 | 11 | 63 | 42 | 62 | 30 | 10 |
11 | 89 | 93 | 96 | 49 | 23 | 40 | 57 |
注意:DataFrame中,无法使用method和limit参数
df.replace(to_replace=6,value='six') # 将数据中的所有6替换成six,默认不改变原表
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 18 | 75 | 98 | 68 | 33 | 35 | 15 |
1 | six | six | six | six | six | six | six |
2 | 3 | 28 | 81 | 21 | 86 | 53 | 85 |
3 | 15 | 35 | 35 | 90 | 63 | 83 | 14 |
4 | 12 | 36 | 65 | 79 | 25 | 53 | 95 |
5 | six | six | six | six | six | six | six |
6 | 31 | 61 | 23 | 33 | 80 | 53 | 60 |
7 | 52 | 47 | 60 | 58 | 54 | 35 | 17 |
8 | six | six | six | six | six | six | six |
9 | 76 | 45 | 30 | 42 | 74 | 83 | 53 |
10 | 69 | 2 | 89 | 99 | 12 | 51 | 62 |
11 | 17 | 86 | 1 | 76 | 40 | 34 | 41 |
df.replace(to_replace={6:'six'}) # 效果同上
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 26 | 9 | 31 | 11 | 38 | 46 | 22 |
1 | six | six | six | six | six | six | six |
2 | 89 | 24 | 53 | 28 | 64 | 89 | 40 |
3 | 7 | 80 | 43 | 91 | 32 | 95 | six |
4 | 96 | 92 | 58 | 55 | 82 | 73 | 21 |
5 | six | six | six | six | six | six | six |
6 | 43 | 1 | 13 | 54 | 24 | 34 | 43 |
7 | 75 | 32 | 88 | 85 | 40 | 29 | 41 |
8 | six | six | six | six | six | six | six |
9 | 93 | 3 | 62 | 4 | 60 | 51 | 78 |
10 | 58 | 11 | 63 | 42 | 62 | 30 | 10 |
11 | 89 | 93 | 96 | 49 | 23 | 40 | 57 |
df.replace(to_replace={5:6},value='six') # 将第5列中的6,替换成six
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 26 | 9 | 31 | 11 | 38 | 46 | 22 |
1 | 6 | 6 | 6 | 6 | 6 | six | 6 |
2 | 89 | 24 | 53 | 28 | 64 | 89 | 40 |
3 | 7 | 80 | 43 | 91 | 32 | 95 | 6 |
4 | 96 | 92 | 58 | 55 | 82 | 73 | 21 |
5 | 6 | 6 | 6 | 6 | 6 | six | 6 |
6 | 43 | 1 | 13 | 54 | 24 | 34 | 43 |
7 | 75 | 32 | 88 | 85 | 40 | 29 | 41 |
8 | 6 | 6 | 6 | 6 | 6 | six | 6 |
9 | 93 | 3 | 62 | 4 | 60 | 51 | 78 |
10 | 58 | 11 | 63 | 42 | 62 | 30 | 10 |
11 | 89 | 93 | 96 | 49 | 23 | 40 | 57 |
2) map()函数
新建一列 , map函数并不是df的方法,而是series的方法
map()可以映射新一列数据
map()中可以使用lambd表达式
map()中可以使用方法,可以是自定义的方法
eg:map({to_replace:value})
注意 map()中不能使用sum之类的函数,for循环
新增一列:给df中,添加一列,该列的值为中文名对应的英文名
dic = {
'name':['张三','周杰伦','张三'],
'salary':[20000,10000,20000]
}
df = DataFrame(data=dic)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
name | salary | |
---|---|---|
0 | 张三 | 20000 |
1 | 周杰伦 | 10000 |
2 | 张三 | 20000 |
# 映射关系表
dic = {
'张三':'tom',
'周杰伦':'jay'
}
df['e_name'] = df['name'].map(dic)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
name | salary | e_name | |
---|---|---|---|
0 | 张三 | 20000 | tom |
1 | 周杰伦 | 10000 | jay |
2 | 张三 | 20000 | tom |
map当做一种运算工具,至于执行何种运算,是由map函数的参数决定的(参数:lambda,函数)
- 使用自定义函数
def after_sal(s):
return s - (s-3000)*0.5
# 超过3000部分的钱缴纳50%的税
df['after_sal'] = df['salary'].map(after_sal)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
name | salary | e_name | after_sal | |
---|---|---|---|---|
0 | 张三 | 20000 | tom | 11500.0 |
1 | 周杰伦 | 10000 | jay | 6500.0 |
2 | 张三 | 20000 | tom | 11500.0 |
df['after_sal'] = df['salary'].apply(after_sal) # apply效率高于map
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
name | salary | e_name | after_sal | |
---|---|---|---|---|
0 | 张三 | 20000 | tom | 11500.0 |
1 | 周杰伦 | 10000 | jay | 6500.0 |
2 | 张三 | 20000 | tom | 11500.0 |
- 使用lambda表达式
df['after_sal'] = df['salary'].apply(lambda x:x-(x-3000)*0.5) # 或map
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
name | salary | e_name | after_sal | |
---|---|---|---|---|
0 | 张三 | 20000 | tom | 11500.0 |
1 | 周杰伦 | 10000 | jay | 6500.0 |
2 | 张三 | 20000 | tom | 11500.0 |
注意:并不是任何形式的函数都可以作为map的参数。只有当一个函数具有一个参数且有返回值,那么该函数才可以作为map的参数。
3. 使用聚合操作对数据异常值检测和过滤
使用df.std()函数可以求得DataFrame对象每一列的标准差
- 创建一个1000行3列的df 范围(0-1),求其每一列的标准差
df = DataFrame(data=np.random.random(size=(1000,3)),columns=['A','B','C'])
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | C | |
---|---|---|---|
0 | 0.056365 | 0.080972 | 0.378327 |
1 | 0.371930 | 0.007791 | 0.318345 |
2 | 0.140999 | 0.921772 | 0.752930 |
3 | 0.877110 | 0.447756 | 0.760049 |
4 | 0.212178 | 0.143772 | 0.621486 |
5 | 0.255404 | 0.195473 | 0.008677 |
6 | 0.011568 | 0.308934 | 0.882607 |
7 | 0.470868 | 0.080049 | 0.285998 |
8 | 0.659013 | 0.794802 | 0.270541 |
9 | 0.315826 | 0.814653 | 0.906056 |
10 | 0.892474 | 0.301340 | 0.687254 |
11 | 0.015484 | 0.567598 | 0.043682 |
12 | 0.957620 | 0.967676 | 0.063608 |
13 | 0.102506 | 0.490077 | 0.235902 |
14 | 0.099083 | 0.778190 | 0.451824 |
15 | 0.023148 | 0.074169 | 0.589411 |
16 | 0.425894 | 0.772662 | 0.797658 |
17 | 0.939475 | 0.773502 | 0.766101 |
18 | 0.330299 | 0.984615 | 0.346554 |
19 | 0.882735 | 0.237546 | 0.847036 |
20 | 0.578589 | 0.730879 | 0.751632 |
21 | 0.504627 | 0.716272 | 0.386102 |
22 | 0.424879 | 0.231262 | 0.590047 |
23 | 0.580738 | 0.675268 | 0.726104 |
24 | 0.507248 | 0.136465 | 0.463764 |
25 | 0.421517 | 0.814806 | 0.449040 |
26 | 0.275373 | 0.935430 | 0.525679 |
27 | 0.404031 | 0.221492 | 0.730966 |
28 | 0.779142 | 0.063435 | 0.120807 |
29 | 0.618392 | 0.535934 | 0.554632 |
... | ... | ... | ... |
970 | 0.378107 | 0.687434 | 0.567923 |
971 | 0.876770 | 0.443219 | 0.236627 |
972 | 0.486757 | 0.416836 | 0.524889 |
973 | 0.886021 | 0.203959 | 0.789022 |
974 | 0.838247 | 0.279468 | 0.333581 |
975 | 0.762230 | 0.352878 | 0.550439 |
976 | 0.044568 | 0.680916 | 0.350743 |
977 | 0.031232 | 0.029839 | 0.918445 |
978 | 0.323142 | 0.686965 | 0.978349 |
979 | 0.746471 | 0.081773 | 0.729567 |
980 | 0.810169 | 0.793025 | 0.993532 |
981 | 0.480849 | 0.321984 | 0.233431 |
982 | 0.491794 | 0.056681 | 0.429988 |
983 | 0.278019 | 0.105290 | 0.435492 |
984 | 0.480974 | 0.098199 | 0.958667 |
985 | 0.465396 | 0.806955 | 0.668972 |
986 | 0.602675 | 0.966963 | 0.338542 |
987 | 0.051971 | 0.105833 | 0.132917 |
988 | 0.416362 | 0.861777 | 0.832573 |
989 | 0.951651 | 0.002912 | 0.942564 |
990 | 0.274033 | 0.071102 | 0.941272 |
991 | 0.632913 | 0.807060 | 0.540686 |
992 | 0.035006 | 0.526970 | 0.058584 |
993 | 0.368957 | 0.395593 | 0.210440 |
994 | 0.692847 | 0.655492 | 0.877564 |
995 | 0.245593 | 0.003551 | 0.913750 |
996 | 0.374804 | 0.311604 | 0.680521 |
997 | 0.355928 | 0.924330 | 0.224949 |
998 | 0.923060 | 0.834740 | 0.275359 |
999 | 0.905336 | 0.482290 | 0.722851 |
1000 rows × 3 columns
对df应用筛选条件,去除标准差太大的数据:假设过滤条件为 C列数据大于两倍的C列标准差
twice_std = df['C'].std() * 2
twice_std
0.5714973528631762
~(df['C'] > twice_std)
0 True
1 True
2 False
3 False
4 False
5 True
6 False
7 True
8 True
9 False
10 False
11 True
12 True
13 True
14 True
15 False
16 False
17 False
18 True
19 False
20 False
21 True
22 False
23 False
24 True
25 True
26 True
27 False
28 True
29 True
...
970 True
971 True
972 True
973 False
974 True
975 True
976 True
977 False
978 False
979 False
980 False
981 True
982 True
983 True
984 False
985 False
986 True
987 True
988 False
989 False
990 False
991 True
992 True
993 True
994 False
995 False
996 False
997 True
998 True
999 False
Name: C, Length: 1000, dtype: bool
df.loc[~(df['C'] > twice_std)]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | C | |
---|---|---|---|
0 | 0.056365 | 0.080972 | 0.378327 |
1 | 0.371930 | 0.007791 | 0.318345 |
5 | 0.255404 | 0.195473 | 0.008677 |
7 | 0.470868 | 0.080049 | 0.285998 |
8 | 0.659013 | 0.794802 | 0.270541 |
11 | 0.015484 | 0.567598 | 0.043682 |
12 | 0.957620 | 0.967676 | 0.063608 |
13 | 0.102506 | 0.490077 | 0.235902 |
14 | 0.099083 | 0.778190 | 0.451824 |
18 | 0.330299 | 0.984615 | 0.346554 |
21 | 0.504627 | 0.716272 | 0.386102 |
24 | 0.507248 | 0.136465 | 0.463764 |
25 | 0.421517 | 0.814806 | 0.449040 |
26 | 0.275373 | 0.935430 | 0.525679 |
28 | 0.779142 | 0.063435 | 0.120807 |
29 | 0.618392 | 0.535934 | 0.554632 |
31 | 0.616251 | 0.034984 | 0.342615 |
33 | 0.009574 | 0.195987 | 0.221378 |
35 | 0.721609 | 0.518311 | 0.561978 |
36 | 0.316993 | 0.678054 | 0.163737 |
37 | 0.494355 | 0.499986 | 0.560351 |
39 | 0.584863 | 0.881738 | 0.481162 |
43 | 0.160369 | 0.402388 | 0.208208 |
45 | 0.002698 | 0.576528 | 0.070493 |
47 | 0.764883 | 0.778927 | 0.494559 |
48 | 0.868643 | 0.392903 | 0.109240 |
49 | 0.058928 | 0.350504 | 0.497170 |
50 | 0.373490 | 0.783554 | 0.335720 |
55 | 0.638066 | 0.442382 | 0.173654 |
56 | 0.837218 | 0.722685 | 0.454352 |
... | ... | ... | ... |
943 | 0.322268 | 0.957496 | 0.108147 |
944 | 0.384463 | 0.490386 | 0.245737 |
945 | 0.382611 | 0.726888 | 0.345724 |
947 | 0.713337 | 0.828064 | 0.364005 |
948 | 0.818703 | 0.445825 | 0.281585 |
951 | 0.968651 | 0.897188 | 0.368103 |
952 | 0.136136 | 0.431300 | 0.543917 |
954 | 0.846105 | 0.064527 | 0.200963 |
955 | 0.708107 | 0.857570 | 0.475146 |
957 | 0.595819 | 0.060763 | 0.294676 |
958 | 0.268046 | 0.790128 | 0.342255 |
959 | 0.116645 | 0.968789 | 0.493773 |
967 | 0.073665 | 0.204168 | 0.286095 |
968 | 0.205796 | 0.596242 | 0.468190 |
970 | 0.378107 | 0.687434 | 0.567923 |
971 | 0.876770 | 0.443219 | 0.236627 |
972 | 0.486757 | 0.416836 | 0.524889 |
974 | 0.838247 | 0.279468 | 0.333581 |
975 | 0.762230 | 0.352878 | 0.550439 |
976 | 0.044568 | 0.680916 | 0.350743 |
981 | 0.480849 | 0.321984 | 0.233431 |
982 | 0.491794 | 0.056681 | 0.429988 |
983 | 0.278019 | 0.105290 | 0.435492 |
986 | 0.602675 | 0.966963 | 0.338542 |
987 | 0.051971 | 0.105833 | 0.132917 |
991 | 0.632913 | 0.807060 | 0.540686 |
992 | 0.035006 | 0.526970 | 0.058584 |
993 | 0.368957 | 0.395593 | 0.210440 |
997 | 0.355928 | 0.924330 | 0.224949 |
998 | 0.923060 | 0.834740 | 0.275359 |
559 rows × 3 columns
- 检测过滤缺失值
- dropna
- fillna
- 检测过滤重复值
- drop_duplicated(keep)
- 检测过滤异常值
- 得到鉴定异常值的条件
- 将异常值对应的行删除
4. 排序
使用.take()函数排序
- take()函数接受一个索引列表,用数字表示,使得df根据列表中索引的顺序进行排序
- eg:df.take([1,3,4,2,5])
可以借助np.random.permutation()函数随机排序
np.random.permutation(1000) # 将0-999进行随机排列
array([956, 614, 993, 437, 371, 215, 579, 282, 301, 646, 893, 7, 441,
539, 953, 794, 155, 370, 154, 100, 753, 793, 412, 867, 941, 998,
672, 590, 708, 1, 634, 899, 417, 242, 557, 122, 397, 850, 543,
560, 389, 896, 903, 505, 685, 334, 665, 460, 768, 937, 522, 637,
121, 605, 107, 130, 286, 532, 982, 563, 995, 89, 217, 218, 82,
781, 951, 798, 200, 947, 790, 398, 538, 411, 15, 44, 784, 205,
281, 314, 439, 132, 192, 238, 795, 470, 65, 842, 259, 426, 528,
383, 682, 750, 119, 465, 503, 278, 715, 603, 544, 265, 239, 569,
204, 616, 343, 710, 653, 256, 6, 873, 338, 27, 570, 707, 70,
73, 233, 838, 799, 266, 859, 279, 136, 479, 724, 870, 611, 574,
564, 655, 177, 39, 253, 148, 471, 317, 661, 851, 69, 523, 513,
928, 650, 23, 582, 622, 814, 959, 723, 938, 612, 912, 865, 402,
638, 80, 962, 214, 983, 194, 680, 758, 29, 74, 86, 102, 583,
695, 580, 835, 931, 832, 454, 258, 493, 967, 670, 555, 494, 501,
581, 591, 179, 354, 118, 671, 380, 732, 229, 719, 623, 874, 495,
944, 900, 123, 250, 628, 244, 872, 731, 625, 586, 57, 752, 596,
827, 775, 841, 163, 394, 833, 153, 669, 295, 826, 384, 890, 711,
60, 141, 237, 198, 404, 463, 712, 960, 749, 510, 866, 609, 26,
169, 372, 459, 365, 949, 124, 733, 12, 257, 668, 878, 487, 138,
652, 300, 219, 413, 445, 193, 207, 337, 779, 77, 95, 693, 812,
409, 33, 490, 992, 9, 167, 358, 743, 369, 99, 817, 542, 706,
289, 589, 666, 927, 391, 761, 844, 452, 66, 830, 498, 968, 689,
329, 508, 526, 335, 884, 129, 972, 507, 480, 274, 110, 425, 500,
388, 418, 869, 769, 251, 863, 456, 112, 247, 304, 478, 481, 429,
741, 241, 347, 37, 673, 427, 285, 415, 59, 853, 144, 822, 125,
455, 64, 332, 71, 971, 763, 804, 19, 191, 918, 608, 61, 327,
137, 116, 746, 482, 828, 766, 691, 424, 727, 468, 633, 302, 861,
848, 134, 704, 491, 320, 280, 660, 375, 846, 359, 987, 511, 342,
307, 399, 76, 825, 11, 28, 961, 485, 451, 675, 457, 618, 554,
551, 885, 531, 880, 534, 160, 607, 367, 374, 797, 910, 970, 595,
575, 756, 90, 897, 801, 49, 140, 985, 512, 577, 922, 168, 225,
360, 315, 350, 919, 231, 911, 631, 31, 774, 103, 186, 892, 293,
483, 149, 860, 887, 93, 340, 744, 908, 52, 196, 222, 955, 3,
930, 571, 484, 156, 50, 843, 599, 506, 936, 703, 881, 273, 520,
41, 85, 328, 223, 48, 492, 97, 56, 36, 974, 924, 656, 58,
649, 92, 114, 62, 173, 984, 973, 346, 573, 996, 597, 990, 667,
206, 917, 213, 272, 462, 686, 469, 472, 236, 643, 787, 224, 120,
255, 24, 171, 94, 904, 771, 344, 556, 981, 593, 988, 271, 762,
363, 254, 535, 361, 979, 303, 692, 964, 504, 150, 894, 349, 796,
714, 525, 943, 785, 260, 145, 292, 718, 811, 234, 641, 403, 818,
999, 461, 778, 802, 901, 352, 40, 515, 32, 877, 664, 323, 966,
635, 905, 754, 940, 810, 182, 75, 442, 308, 262, 776, 592, 267,
203, 294, 657, 34, 414, 405, 232, 151, 373, 601, 14, 807, 467,
421, 43, 935, 430, 287, 313, 283, 152, 516, 530, 356, 559, 518,
644, 889, 977, 521, 548, 381, 674, 929, 0, 916, 246, 540, 297,
67, 980, 422, 117, 772, 53, 13, 91, 46, 423, 509, 21, 128,
598, 115, 610, 679, 783, 264, 78, 270, 824, 311, 648, 220, 636,
226, 658, 886, 227, 268, 773, 620, 529, 864, 502, 567, 713, 963,
366, 210, 333, 249, 600, 701, 2, 640, 407, 745, 942, 113, 87,
390, 159, 188, 948, 957, 488, 351, 288, 245, 431, 248, 164, 767,
839, 702, 803, 792, 594, 837, 489, 934, 684, 386, 629, 519, 876,
63, 448, 98, 858, 378, 298, 368, 453, 25, 868, 624, 79, 133,
902, 906, 428, 401, 162, 157, 728, 950, 662, 190, 496, 568, 975,
952, 627, 909, 994, 131, 780, 751, 883, 871, 319, 722, 199, 536,
209, 821, 318, 290, 393, 35, 325, 187, 786, 681, 284, 514, 331,
647, 855, 143, 989, 642, 96, 676, 986, 561, 602, 336, 20, 379,
847, 735, 954, 645, 547, 357, 447, 435, 739, 228, 566, 305, 353,
158, 755, 716, 730, 856, 127, 47, 392, 862, 809, 720, 760, 432,
243, 932, 208, 382, 585, 747, 111, 836, 736, 700, 705, 615, 355,
18, 330, 820, 8, 857, 184, 175, 221, 737, 524, 697, 436, 395,
764, 939, 104, 759, 819, 240, 659, 147, 269, 387, 420, 621, 364,
926, 201, 549, 165, 696, 742, 997, 181, 277, 726, 10, 683, 991,
291, 81, 126, 68, 920, 808, 572, 740, 533, 699, 72, 146, 230,
888, 5, 606, 466, 263, 458, 898, 604, 385, 805, 105, 211, 945,
958, 721, 823, 376, 497, 545, 576, 738, 626, 852, 449, 541, 444,
406, 976, 88, 815, 552, 166, 183, 178, 438, 553, 84, 83, 717,
651, 782, 678, 324, 584, 42, 687, 517, 195, 106, 101, 933, 434,
348, 440, 587, 310, 923, 663, 921, 499, 565, 296, 38, 891, 895,
316, 30, 978, 677, 170, 322, 613, 546, 527, 630, 476, 174, 51,
816, 845, 185, 108, 17, 321, 813, 806, 109, 882, 197, 550, 907,
339, 698, 965, 362, 729, 914, 791, 694, 475, 879, 486, 309, 748,
326, 688, 202, 410, 915, 690, 854, 377, 341, 788, 22, 777, 275,
473, 261, 400, 45, 54, 135, 770, 189, 946, 562, 925, 537, 789,
312, 829, 725, 252, 800, 578, 446, 55, 419, 396, 4, 558, 212,
831, 450, 299, 161, 617, 345, 306, 757, 709, 180, 235, 433, 840,
477, 913, 474, 734, 408, 443, 834, 654, 875, 172, 632, 416, 16,
216, 464, 139, 619, 588, 969, 176, 276, 142, 639, 765, 849])
# 行排序与列排序均随机
df.take(indices=np.random.permutation(1000),axis=0).take(indices=np.random.permutation(3),axis=1)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | C | B | |
---|---|---|---|
810 | 0.056462 | 0.836914 | 0.105296 |
2 | 0.140999 | 0.752930 | 0.921772 |
721 | 0.941986 | 0.206568 | 0.283233 |
803 | 0.302248 | 0.027969 | 0.946815 |
46 | 0.576391 | 0.604795 | 0.199215 |
224 | 0.091563 | 0.448896 | 0.460941 |
682 | 0.081894 | 0.360009 | 0.174743 |
894 | 0.758221 | 0.311932 | 0.054626 |
389 | 0.951142 | 0.174418 | 0.764700 |
441 | 0.283697 | 0.577370 | 0.698306 |
350 | 0.623445 | 0.681211 | 0.547610 |
53 | 0.186217 | 0.617344 | 0.339724 |
467 | 0.231915 | 0.540558 | 0.972880 |
962 | 0.543442 | 0.895628 | 0.444214 |
598 | 0.516110 | 0.047393 | 0.670478 |
337 | 0.022056 | 0.222698 | 0.010719 |
481 | 0.182805 | 0.301250 | 0.652167 |
277 | 0.127561 | 0.749532 | 0.170472 |
162 | 0.767004 | 0.261541 | 0.381312 |
250 | 0.847071 | 0.344957 | 0.539958 |
416 | 0.369274 | 0.495600 | 0.393579 |
425 | 0.228196 | 0.273655 | 0.114908 |
843 | 0.394974 | 0.904397 | 0.875514 |
893 | 0.451844 | 0.336345 | 0.787189 |
492 | 0.516625 | 0.499929 | 0.350670 |
453 | 0.218878 | 0.957251 | 0.308231 |
186 | 0.611224 | 0.981765 | 0.809362 |
243 | 0.092659 | 0.374212 | 0.658671 |
522 | 0.773774 | 0.436375 | 0.037527 |
961 | 0.172133 | 0.762221 | 0.800747 |
... | ... | ... | ... |
624 | 0.587435 | 0.183552 | 0.831386 |
675 | 0.636248 | 0.542904 | 0.918788 |
861 | 0.519202 | 0.322943 | 0.315798 |
989 | 0.951651 | 0.942564 | 0.002912 |
136 | 0.940608 | 0.069835 | 0.504026 |
950 | 0.294872 | 0.712361 | 0.821118 |
529 | 0.648302 | 0.860493 | 0.626701 |
833 | 0.783501 | 0.823326 | 0.357173 |
173 | 0.181090 | 0.697154 | 0.906783 |
615 | 0.177069 | 0.732558 | 0.275658 |
182 | 0.091686 | 0.262477 | 0.340532 |
913 | 0.069850 | 0.903723 | 0.102737 |
417 | 0.353772 | 0.345310 | 0.618327 |
487 | 0.697415 | 0.083422 | 0.921608 |
345 | 0.331507 | 0.295755 | 0.995060 |
978 | 0.323142 | 0.978349 | 0.686965 |
197 | 0.947977 | 0.235533 | 0.295503 |
133 | 0.428408 | 0.963203 | 0.485624 |
214 | 0.861541 | 0.840486 | 0.435903 |
640 | 0.453934 | 0.807253 | 0.940066 |
977 | 0.031232 | 0.918445 | 0.029839 |
698 | 0.780159 | 0.042282 | 0.127449 |
427 | 0.326411 | 0.101616 | 0.915007 |
898 | 0.768911 | 0.231629 | 0.451036 |
77 | 0.718200 | 0.682757 | 0.986735 |
865 | 0.553171 | 0.535761 | 0.088467 |
513 | 0.203601 | 0.908238 | 0.116113 |
711 | 0.655778 | 0.164941 | 0.472295 |
685 | 0.012172 | 0.035356 | 0.501114 |
801 | 0.891855 | 0.355426 | 0.682663 |
1000 rows × 3 columns
- np.random.permutation(x)可以生成x个从0-(x-1)的随机数列
df.take(indices=np.random.permutation(1000),axis=0).take(indices=np.random.permutation(3),axis=1)[0:5]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
B | A | C | |
---|---|---|---|
839 | 0.817163 | 0.346661 | 0.113644 |
708 | 0.644456 | 0.327089 | 0.081710 |
244 | 0.852833 | 0.366820 | 0.028656 |
728 | 0.627186 | 0.850947 | 0.375577 |
238 | 0.784179 | 0.764240 | 0.579280 |
随机抽样
当DataFrame规模足够大时,直接使用np.random.permutation(x)函数,就配合take()函数实现随机抽样
5. 数据分类处理【重点】
数据聚合是数据处理的最后一步,通常是要使每一个数组生成一个单一的数值。
数据分类处理:
- 分组:先把数据分为几组
- 用函数处理:为不同组的数据应用不同的函数以转换数据
- 合并:把不同组得到的结果合并起来
数据分类处理的核心:
- groupby()函数
- groups属性查看分组情况
- eg: df.groupby(by='item').groups
分组
df = DataFrame({'item':['Apple','Banana','Orange','Banana','Orange','Apple'],
'price':[4,3,3,2.5,4,2],
'color':['red','yellow','yellow','green','green','green'],
'weight':[12,20,50,30,20,44]})
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
color | item | price | weight | |
---|---|---|---|---|
0 | red | Apple | 4.0 | 12 |
1 | yellow | Banana | 3.0 | 20 |
2 | yellow | Orange | 3.0 | 50 |
3 | green | Banana | 2.5 | 30 |
4 | green | Orange | 4.0 | 20 |
5 | green | Apple | 2.0 | 44 |
- 使用groupby实现分组
df.groupby(by='item',axis=0)
<pandas.core.groupby.DataFrameGroupBy object at 0x00000235AA6F6C18>
- 使用groups查看分组情况
# 该函数可以进行数据的分组,但是不显示分组情况
df.groupby(by='item',axis=0).groups
{'Apple': Int64Index([0, 5], dtype='int64'),
'Banana': Int64Index([1, 3], dtype='int64'),
'Orange': Int64Index([2, 4], dtype='int64')}
- 分组后的聚合操作:分组后的成员中可以被进行运算的值会进行运算,不能被运算的值不进行运算
# 给df创建一个新列,内容为各个水果的平均价格
df.groupby(by='item',axis=0).mean()['price']
item
Apple 3.00
Banana 2.75
Orange 3.50
Name: price, dtype: float64
mean_price_series = df.groupby(by='item',axis=0)['price'].mean()
mean_price_series
item
Apple 3.00
Banana 2.75
Orange 3.50
Name: price, dtype: float64
# 映射关系表
dic = mean_price_series.to_dict()
df['mean_price'] = df['item'].map(dic)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
color | item | price | weight | mean_price | |
---|---|---|---|---|---|
0 | red | Apple | 4.0 | 12 | 3.00 |
1 | yellow | Banana | 3.0 | 20 | 2.75 |
2 | yellow | Orange | 3.0 | 50 | 3.50 |
3 | green | Banana | 2.5 | 30 | 2.75 |
4 | green | Orange | 4.0 | 20 | 3.50 |
5 | green | Apple | 2.0 | 44 | 3.00 |
计算出苹果的平均价格
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
color | item | price | weight | |
---|---|---|---|---|
0 | red | Apple | 4.0 | 12 |
1 | yellow | Banana | 3.0 | 20 |
2 | yellow | Orange | 3.0 | 50 |
3 | green | Banana | 2.5 | 30 |
4 | green | Orange | 4.0 | 20 |
5 | green | Apple | 2.0 | 44 |
按颜色查看各种颜色的水果的平均价格
汇总:将各种颜色水果的平均价格和df进行汇总
df['color_mean_price'] = df['color'].map(df.groupby(by='color')['price'].mean().to_dict())
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
color | item | price | weight | mean_price | color_mean_price | |
---|---|---|---|---|---|---|
0 | red | Apple | 4.0 | 12 | 3.00 | 4.000000 |
1 | yellow | Banana | 3.0 | 20 | 2.75 | 3.000000 |
2 | yellow | Orange | 3.0 | 50 | 3.50 | 3.000000 |
3 | green | Banana | 2.5 | 30 | 2.75 | 2.833333 |
4 | green | Orange | 4.0 | 20 | 3.50 | 2.833333 |
5 | green | Apple | 2.0 | 44 | 3.00 | 2.833333 |
6.高级数据聚合
使用groupby分组后,也可以使用transform和apply提供自定义函数实现更多的运算
- df.groupby('item')['price'].sum() <==> df.groupby('item')['price'].apply(sum)
- transform和apply都会进行运算,在transform或者apply中传入函数即可
- transform和apply也可以传入一个lambda表达式
df.groupby(by='item')['price'].mean()
item
Apple 3.00
Banana 2.75
Orange 3.50
Name: price, dtype: float64
def my_mean(s):
sum = 0
for i in s:
sum += i
return sum/len(s)
# 使用apply函数求出水果的平均价格
df.groupby(by='item')['price'].apply(my_mean)
item
Apple 3.00
Banana 2.75
Orange 3.50
Name: price, dtype: float64
# 使用transform函数求出水果的平均价格
df.groupby(by='item')['price'].transform(my_mean)
0 3.00
1 2.75
2 3.50
3 2.75
4 3.50
5 3.00
Name: price, dtype: float64
Pandas的高级操作的更多相关文章
- 数据分析05 /pandas的高级操作
数据分析05 /pandas的高级操作 目录 数据分析05 /pandas的高级操作 1. 替换操作 2. 映射操作 3. 运算工具 4. 映射索引 / 更改之前索引 5. 排序实现的随机抽样/打乱表 ...
- 数据分析06 /pandas高级操作相关案例:人口案例分析、2012美国大选献金项目数据分析
数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 目录 数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 1. ...
- pandas高级操作
pandas高级操作 import numpy as np import pandas as pd from pandas import DataFrame,Series 替换操作 替换操作可以同步作 ...
- 一句Python,一句R︱pandas模块——高级版data.frame
先学了R,最近刚刚上手python,所以想着将python和R结合起来互相对比来更好理解python.最好就是一句python,对应写一句R. pandas可谓如雷贯耳,数据处理神器. 以下符号: = ...
- pandas函数高级
一.处理丢失数据 有两种丢失数据: None np.nan(NaN) 1. None None是Python自带的,其类型为python object.因此,None不能参与到任何计算中. #查看No ...
- [Session] SessionHelper2---C#关于Session高级操作帮助类 (转载)
点击下载 SessionHelper2.rar 这个类是关于Session的一些高级操作1.添加时限制时间2.读取对象3.读取数据等等看下面代码吧 /// <summary> /// 联系 ...
- cassandra高级操作之索引、排序以及分页
本次就给大家讲讲cassandra的高级操作:索引.排序和分页:处于性能的考虑,cassandra对这些支持都比较简单,所以我们不能希望cassandra完全适用于我们的逻辑,而是应该将我们的逻辑设计 ...
- MySQL学习笔记_9_MySQL高级操作(上)
MySQL高级操作(上) 一.MySQL表复制 create table t2 like t1; #复制表结构,t2可以学习到t1所有的表结构 insert into t2 ...
- MySQL学习笔记_10_MySQL高级操作(下)
MySQL高级操作(下) 五.MySQL预处理语句 1.设置预处理stmt,传递一个数据作为where的判断条件 prepare stmt from "select * from table ...
随机推荐
- python实现通过企业微信发送消息
实现了通过企业微信发送消息,平时用于运维的告警还是不错的,相对于邮件来说,实时性更高,不过就是企业微信比较麻烦,此处不做过多解释. 企业微信api的详细请看:http://work.weixin.qq ...
- [python 学习] requests 库的使用
1.get请求 # -*- coding: utf-8 -*- import requests URL_IP = "http://b.com/index.php" pyload = ...
- 函数柯里化(Currying)小实践
什么是函数柯里化 在计算机科学中,柯里化(Currying)是把接受多个参数的函数变换成接受一个单一参数(最初函数的第一个参数)的函数,并且返回接受余下的参数且返回结果的新函数的技术.这个技术由 Ch ...
- css 响应式(媒介查询)
1.CSS 来实现响应式 CSS实现响应式网站的布局要用到的就是CSS中的媒体查询接下来来简单介绍一下: @media 类型 and (条件1) and (条件二){css样式} <link r ...
- Django中如何将javascript中的变量传给位于javascript内的{% url %}中的参数?
这个问题困扰了我一天,不知道困扰了你多久,希望能帮助你 django 中的url模版使用起来可以说是非常方便的,但是怎么在url模版中传入参数的 {% url "url.index" ...
- Task9.Attention
注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理.语音识别还是自然语言处理的各种不同类型的任务中,都很容易遇到注意力模型的身影.所以,了解注意力机制的工作原理对于关注深度学习技术发展的技 ...
- Flask路由之重定向
Flask框架提供了请求重定向功能,只需要使用 redirect_to即可, 示例代码如下: from flask import Flask, render_template, request, re ...
- android开发里跳过的坑——GridView使用Glide加载图片不显示
用grideview显示本地图片列表,用了Glide加载框架,具体调用如下: Glide.with(mContext).load(Uri.fromFile(file)).into(imageView) ...
- PHPExcel笔记
PHPExcel可是个好东东,功能强大,下面这是一个phpExcel简易中文帮助手册,列举了各种属性,以及常用的操作方法,是每一个都用实例加以说明,希望对大家有所帮助. 引用PHPExcel incl ...
- scau 1079 三角形(暴力)
</pre>1079 三角形</h1></center><p align="center" style="margin-top: ...