BZOJ 2741: 【FOTILE模拟赛】L(可持久化Trie+分块)
解题思路
首先求出前缀异或和,那么问题就转化成了区间内选两个数使得其异或和最大。数据范围不是很大考虑分块,设\(f[x][i]\)表示第\(x\)块开头到\(i\)这个位置与\(a[i]\)异或得到的最大的数,而对\(f\)求前缀\(max\)就可以得出每一块的开头到后面任意一点的区间内异或最大。而求\(f\)的过程实际是从区间内取一个数和给定数异或和最大,那么这个可以用\(0/1\) \(Trie\)来做,就可以造一棵可持久化\(Trie\)。询问时整块直接调用\(f\),前面的小块直接用可持久化\(Trie\)求解,时间复杂度\(O(n\sqrt(n) logn)\)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=12005;
const int M=N*60;
typedef long long LL;
template<class T> void rd(T &x){
x=0; char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
}
inline int max(int x,int y) {return x>y?x:y;}
int n,m,siz,num,rt[N],tot,bl[N],l[N],r[N];
int a[N],f[205][N],lstans,zz[N];
struct Trie{
int ch[M][2],sum[M];
void insert(int pre,int &x,int now,int d){
x=++tot; sum[x]=sum[pre]+1; if(!d) return ;
ch[x][0]=ch[pre][0]; ch[x][1]=ch[pre][1];
if(now&(1<<(d-1))) insert(ch[pre][1],ch[x][1],now,d-1);
else insert(ch[pre][0],ch[x][0],now,d-1);
}
int query(int u,int v,int now,int d){
if(!d) return 0;
if(now&(1<<(d-1))) {
if(sum[ch[u][0]]-sum[ch[v][0]]!=0)
return (query(ch[u][0],ch[v][0],now,d-1))|(1<<(d-1));
else return query(ch[u][1],ch[v][1],now,d-1);
}
else {
if(sum[ch[u][1]]-sum[ch[v][1]]!=0)
return (query(ch[u][1],ch[v][1],now,d-1)|(1<<(d-1)));
else return query(ch[u][0],ch[v][0],now,d-1);
}
}
}tree;
inline void prework(){
for(int i=1;i<=num;++i)
for(int j=l[i]+1;j<=n;++j)
f[i][j]=tree.query(rt[j],rt[l[i]-1],a[j],31);
// for(int i=1;i<=num;i++)
// for(int j=l[i]+1;j<=n;j++)
// printf("f[%d][%d]=%lld\n",i,j,f[i][j]);
for(int i=1;i<=num;++i)
for(int j=l[i]+1;j<=n;++j)
f[i][j]=max(f[i][j],f[i][j-1]);
}
inline int ask(int x,int y){
int ret=0;
if(bl[x]==bl[y]){
for(int i=x;i<y;++i)
ret=max(ret,tree.query(rt[y],rt[max(0,x-1)],a[i],31));
return ret;
}
ret=f[bl[x]+1][y];
for(int i=x;i<=r[bl[x]];++i)
ret=max(ret,tree.query(rt[y],rt[max(0,x-1)],a[i],31));
return ret;
}
signed main(){
rd(n),rd(m); siz=sqrt(n);
num=n/siz; if(n%siz) num++;
for(int i=1;i<=n;++i){
rd(a[i]); bl[i]=(i-1)/siz+1; a[i]^=a[i-1];
tree.insert(rt[i-1],rt[i],a[i],31);
}
for(int i=1;i<=num;++i) l[i]=(i-1)*siz+1,r[i]=i*siz;
r[num]=n; prework(); int L,R;
while(m--){
rd(L); rd(R);
L=((LL)lstans+L)%n+1,R=((LL)lstans+R)%n+1;
if(L>R) swap(L,R); lstans=ask(L-1,R);
printf("%d\n",lstans);
}
return 0;
}
BZOJ 2741: 【FOTILE模拟赛】L(可持久化Trie+分块)的更多相关文章
- BZOJ.2741.[FOTILE模拟赛]L(分块 可持久化Trie)
题目链接 首先记\(sum\)为前缀异或和,那么区间\(s[l,r]=sum[l-1]^{\wedge}sum[r]\).即一个区间异或和可以转为求两个数的异或和. 那么对\([l,r]\)的询问即求 ...
- bzoj 2741 [FOTILE模拟赛] L
Description 多个询问l,r,求所有子区间异或和中最大是多少 强制在线 Solution 分块+可持久化trie 1.对于每块的左端点L,预处理出L到任意一个i,[L,j] 间所有子区间异或 ...
- 【bzoj2741】[FOTILE模拟赛]L 可持久化Trie树+分块
题目描述 FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor A ...
- 【BZOJ2741】【块状链表+可持久化trie】FOTILE模拟赛L
Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...
- BZOJ2741 FOTILE模拟赛L(分块+可持久化trie)
显然做个前缀和之后变成询问区间内两个数异或最大值. 一种暴力做法是建好可持久化trie后直接枚举其中一个数查询,复杂度O(nmlogv). 观察到数据范围很微妙.考虑瞎分块. 设f[i][j]为第i个 ...
- 【bzoj2741】[FOTILE模拟赛] L
Portal --> bzoj2741 Solution 突然沉迷分块不能自拔 考虑用分块+可持久化trie来解决这个问题 对于每一块的块头\(L\),预处理\([L,i]\)区间内的所有子区间 ...
- BZOJ2741:[FOTILE模拟赛]L
Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...
- bzoj 2741: 【FOTILE模拟赛】L 分塊+可持久化trie
2741: [FOTILE模拟赛]L Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 1116 Solved: 292[Submit][Status] ...
- 【BZOJ】【2741】【FOTILE模拟赛】L
可持久化Trie+分块 神题……Orz zyf & lyd 首先我们先将整个序列搞个前缀异或和,那么某一段的异或和,就变成了两个数的异或和,所以我们就将询问[某个区间中最大的区间异或和]改变成 ...
随机推荐
- Linux实用技巧--隧道
平时开发过程中,可能会遇到一些网络问题,比如npm install 一些依赖包.本地电脑是可以,没有问题.但是测试环境服务器,由于公司内部网络安全限制,不可以随意访问外部网络.因此下载一个依赖包就变得 ...
- Intent的setFlag和addFlag有什么区别?
Intent的setFlag和addFlag有什么区别?setFlag是把之前的替换掉,addFlag是添加新的 Intent it=new Intent(); it.setClass(Setting ...
- Python笔记(二十一)_内置函数、内置方法
内置函数 issubclass(class1,class2) 判断class1类是否为class2类的子类,返回True和False 注意1:类会被认为是自身的子类 >>>issub ...
- Bootstrap 学习笔记11 按钮和折叠插件
复选框: <div class="btn-group" data-toggle="buttons"> <label for="se ...
- 机器学习实战笔记-2-kNN近邻算法
# k-近邻算法(kNN) 本质是(提取样本集中特征最相似数据(最近邻)的k个分类标签). K-近邻算法的优缺点 例 优点:精度高,对异常值不敏感,无数据输入假定: 缺点:计算复杂度高,空间复杂度高: ...
- 利用多态,简易实现电脑usb连接设备案例
package cn.learn.Practice03; public interface UsbInterface { void open(); //打开usb void close(); //关闭 ...
- 华为Android手机打开Log
华为Android手机打开Log, 显示日志方法 今天在华为u8650上调试应用程序时,发现Eclipse的log始终无法显示,在网上找了好多资料,甚至stack overflow也查了,最后终于找到 ...
- 谁动了我的内存:php内存泄露,系统缓存消耗? 转摘:http://blog.csdn.net/tao_627/article/details/9532497
http://www.laruence.com/2011/03/04/1894.html 前言:持续我一贯的标题党作风,说说例子解决方案,没有深入探讨. 情景:线上图片服务压缩的图片品质(100),缩 ...
- C#面试 笔试题 六
1.String str=new String("a")和String str = "a"有什么区别? String str = "a"; ...
- 【学习总结】认识MVC
参考链接: 菜鸟教程-MVC模式 CSDN:浅谈MVC架构-你到底有什么本事 目录: 一.什么是MVC 1.概念 MVC全名是Model View Controller,是模型(model)-视图(v ...