1. /*
  2. 长记性了,以后对大数组初始化要注意了!140ms
  3. 原来是对vis数组进行每次初始化,每次初始化要200*200的复杂度
  4. 一直超时,发现没必要这样,直接标记点就行了,只需要一个15的数组用来标记,vis数组用来映射坐标就行了
  5. 然后就是暴力加了一点优化,下面没有加优化。
  6. */
  7. #include<stdio.h>
  8. #include<string.h>
  9. #define inf 0x3fffffff
  10. #define N 210
  11. int vis[N][N];
  12. char s[N][N];
  13. int vss[20];
  14. struct node
  15. {
  16. int x,y;
  17. } fp[N],ff[N];
  18. int dd(int xx,int yy)
  19. {
  20. if(!vss[vis[xx][yy]])
  21. {
  22. vss[vis[xx][yy]]++;
  23. return 1;
  24. }
  25. else
  26. vss[vis[xx][yy]]++;
  27. return 0;
  28. }
  29. int flag[N];
  30. int x1,y1,x2,y2;
  31. void td(int k)
  32. {
  33. if(k==0)
  34. {
  35. x1=-1;
  36. y1=0;
  37. x2=0;
  38. y2=1;
  39. }
  40. if(k==1)
  41. {
  42. x2=0;
  43. y2=1;
  44. x1=1;
  45. y1=0;
  46. }
  47. if(k==2)
  48. {
  49. x2=0;
  50. y2=-1;
  51. x1=1;
  52. y1=0;
  53. }
  54. if(k==3)
  55. {
  56. x2=0;
  57. y2=-1;
  58. x1=-1;
  59. y1=0;
  60. }
  61. return ;
  62. }
  63. int n,m;
  64. int judge(int xx,int yy)
  65. {
  66. if(xx>=1&&xx<=n&&yy>=1&&yy<=m)
  67. return 1;
  68. return 0;
  69. }
  70. void init(int xx,int yy) {
  71. vss[vis[xx+x1][yy+y1]]--;
  72. vss[vis[xx+x2][yy+y2]]--;
  73. vss[vis[xx][yy+1]]++;
  74. vss[vis[xx-1][yy]]++;
  75. }
  76. int main()
  77. {
  78. int i,j,k,cnt,cur,maxx,num;
  79. while(scanf("%d%d",&n,&m),n||m)
  80. {
  81. for(i=1; i<=n; i++)
  82. scanf("%s",s[i]+1);
  83. cnt=0;
  84. maxx=inf;
  85. memset(vis,0,sizeof(vis));
  86. for(i=1; i<=n; i++)
  87. for(j=1; j<=m; j++)
  88. if(s[i][j]=='.')
  89. {
  90. fp[++cnt].x=i;
  91. fp[cnt].y=j;
  92. vis[i][j]=cnt;
  93. }
  94. if(cnt==0)
  95. {
  96. printf("0\n");
  97. continue;
  98. }
  99.  
  100. for(i=0; i<(1<<cnt); i++)
  101. {
  102. memset(vss,0,sizeof(vss));
  103. int len=0;
  104. // if(i!=18)continue;
  105. // printf("i=%d\n",i);
  106. for(j=0; j<cnt; j++)
  107. if(i&(1<<j))
  108. {
  109. ff[len].x=fp[j+1].x;
  110. ff[len++].y=fp[j+1].y;
  111. // printf("j=%d ",j+1);
  112. }
  113. // printf("%d\n",len);
  114. int xx,yy,nu=0;
  115. num=0;
  116. for(cur=0; cur<len; cur++)
  117. {
  118. xx=ff[cur].x,yy=ff[cur].y;
  119. num+=dd(xx,yy);
  120. if(judge(xx,yy+1))
  121. {
  122. if(s[xx][yy+1]=='#')
  123. nu++;
  124. else
  125. num+=dd(xx,yy+1);
  126. }
  127. if(judge(xx-1,yy))
  128. {
  129. if(s[xx-1][yy]=='#')
  130. nu++;
  131. else
  132. num+=dd(xx-1,yy);
  133. }
  134. }
  135. // printf("len=%d %d %d\n",len,num,nu);
  136. int nuk,xv,yv,nn,flag;
  137. for(j=0;j<len;j++)
  138. for(k=0;k<4;k++) {
  139. nuk=0;nn=0;flag=0;xv=0;yv=0;
  140. xx=ff[j].x;yy=ff[j].y;
  141. // printf("%d %d %d\n",xx,yy+1,vis[xx][yy+1]);
  142. if(judge(xx,yy+1))
  143. {
  144. if(s[xx][yy+1]=='#')
  145. nuk++;
  146. else
  147. if(vss[vis[xx][yy+1]]==1) {
  148. nn++;
  149. vss[vis[xx][yy+1]]--;
  150. }
  151. else
  152. vss[vis[xx][yy+1]]--;
  153. }
  154. if(judge(xx-1,yy))
  155. {
  156. if(s[xx-1][yy]=='#')
  157. nuk++;
  158. else
  159. if(vss[vis[xx-1][yy]]==1) {
  160. nn++;
  161. vss[vis[xx-1][yy]]--;
  162. }
  163. else vss[vis[xx-1][yy]]--;
  164. }
  165. td(k);
  166. // printf("x1=%d %d %d\n",xx+x1,yy+y1,vis[xx+x1][yy+y1]);
  167. if(judge(xx+x1,yy+y1)) {
  168. if(s[xx+x1][yy+y1]=='#')
  169. flag=1;
  170. else
  171. xv=dd(xx+x1,yy+y1);
  172. }
  173. // printf("x2=%d %d %d\n",xx+x2,yy+y2,vis[xx+x2][yy+y2]);
  174. if(judge(xx+x2,yy+y2)) {
  175. if(s[xx+x2][yy+y2]=='#')
  176. flag=1;
  177. else
  178. yv=dd(xx+x2,yy+y2);
  179. }
  180. init(xx,yy);
  181. // printf("nuk=%d %d %d %d %d %d\n",nuk,k,j,xv,yv,nn);
  182. if(nu==nuk&&num-nn+xv+yv==cnt&&!flag) {
  183. // printf("z=%d %d %d\n",j,k,num);
  184. // if(len==2)printf("%d %d %d\n",i,j,k);
  185. if(maxx>len)
  186. maxx=len;
  187. break;
  188. }
  189. }
  190.  
  191. // printf("%d %d\n",cur,num);
  192. }
  193. if(maxx==inf)
  194. printf("-1\n");
  195. else
  196. printf("%d\n",maxx);
  197. }
  198. return 0;
  199. }
  1. /*
  2. 343ms
  3. 纯暴力
  4. */
  5. #include<stdio.h>
  6. #include<string.h>
  7. #define inf 0x3fffffff
  8. #define N 300
  9. int vis[N][N];
  10. char s[N][N];
  11. int vss[N];
  12. struct node
  13. {
  14. int x,y;
  15. } fp[N],ff[N];
  16. int dd(int xx,int yy)
  17. {
  18. if(!vss[vis[xx][yy]])
  19. {
  20. vss[vis[xx][yy]]=1;
  21. return 1;
  22. }
  23. return 0;
  24. }
  25. int x1,y1,x2,y2;
  26. void td(int k)
  27. {
  28. if(k==0)
  29. {
  30. x1=-1;
  31. y1=0;
  32. x2=0;
  33. y2=1;
  34. }
  35. if(k==1)
  36. {
  37. x2=0;
  38. y2=1;
  39. x1=1;
  40. y1=0;
  41. }
  42. if(k==2)
  43. {
  44. x2=0;
  45. y2=-1;
  46. x1=1;
  47. y1=0;
  48. }
  49. if(k==3)
  50. {
  51. x2=0;
  52. y2=-1;
  53. x1=-1;
  54. y1=0;
  55. }
  56. return ;
  57. }
  58. int n,m;
  59. int judge(int xx,int yy)
  60. {
  61. if(xx>=1&&xx<=n&&yy>=1&&yy<=m)
  62. return 1;
  63. return 0;
  64. }
  65. int main()
  66. {
  67. int i,j,k,cnt,cur,maxx,ok;
  68. while(scanf("%d%d",&n,&m),n||m)
  69. {
  70. for(i=1; i<=n; i++)
  71. scanf("%s",s[i]+1);
  72. cnt=0;
  73. maxx=inf;
  74. for(i=1; i<=n; i++)
  75. for(j=1; j<=m; j++)
  76. if(s[i][j]=='.')
  77. {
  78. fp[++cnt].x=i;
  79. fp[cnt].y=j;
  80. vis[i][j]=cnt;
  81. }
  82. if(cnt==0)
  83. {
  84. printf("0\n");
  85. continue;
  86. }
  87. for(i=0; i<(1<<cnt); i++)
  88. {
  89. int len=0;
  90. for(j=0; j<cnt; j++)
  91. if(i&(1<<j))
  92. {
  93. ff[len].x=fp[j+1].x;
  94. ff[len++].y=fp[j+1].y;
  95. }
  96. // printf("%d\n",len);
  97. for(j=0; j<len; j++)
  98. for(k=0; k<4; k++)
  99. {
  100. memset(vss,0,sizeof(vss));
  101. int xx=ff[j].x,yy=ff[j].y;
  102. int num=0;
  103. num+=dd(xx,yy);
  104. td(k);
  105. // printf("%d %d %d",k,xx+x1,yy+y1);
  106. if(judge(xx+x1,yy+y1))
  107. {
  108. if(s[xx+x1][yy+y1]=='#')continue;
  109. num+=dd(xx+x1,yy+y1);
  110. }
  111. if(judge(xx+x2,yy+y2))
  112. {
  113. if(s[xx+x2][yy+y2]=='#')continue;;
  114. num+=dd(xx+x2,yy+y2);
  115. }
  116. for(cur=0; cur<len; cur++)
  117. {
  118. if(cur==j)continue;
  119. xx=ff[cur].x,yy=ff[cur].y;
  120. num+=dd(xx,yy);
  121. if(judge(xx,yy+1))
  122. {
  123. if(s[xx][yy+1]=='#')break;
  124. num+=dd(xx,yy+1);
  125. }
  126. if(judge(xx-1,yy))
  127. {
  128. if(s[xx-1][yy]=='#')break;
  129. num+=dd(xx-1,yy);
  130. }
  131. }
  132. // printf("%d %d\n",cur,num);
  133. if(cur==len)
  134. {
  135. if(num==cnt)
  136. {
  137. if(maxx>len)
  138. maxx=len;
  139. break;
  140. }
  141. }
  142. }
  143. }
  144. if(maxx==inf)
  145. printf("-1\n");
  146. else
  147. printf("%d\n",maxx);
  148. }
  149. return 0;
  150. }

hdu 4770 状压+枚举的更多相关文章

  1. HDU 4778 状压DP

    一看就是状压,由于是类似博弈的游戏.游戏里的两人都是绝对聪明,那么先手的选择是能够确定最终局面的. 实际上是枚举最终局面情况,0代表是被Bob拿走的,1为Alice拿走的,当时Alice拿走且满足变换 ...

  2. [POJ1681]Painter's Problem(高斯消元,异或方程组,状压枚举)

    题目链接:http://poj.org/problem?id=1681 题意:还是翻格子的题,但是这里有可能出现自由变元,这时候枚举一下就行..(其实这题直接状压枚举就行) /* ━━━━━┒ギリギリ ...

  3. HDU2489【状压枚举】

    题意: 给你n个点的图,然后让你在图里挑m个点,达到sumedge/sumnode最小 思路: 由于数据范围小,状压枚举符合m个点的状态,我是用vactor存了结点位置,也记录了结点的sum值,然后跑 ...

  4. POJ3734【状压枚举】

    题意: 给你两个01矩阵,去掉矩阵B的某些行和某些列,问处理后的矩阵B能否变成矩阵A: 思路: 数据较小,状压枚举B矩阵列的数量=A矩阵列的数量时的状态,然后搞定了列,贪心判断B矩阵的行就好了: #i ...

  5. hdu 6435 /// 状压

    题目大意: 给定 n m k 为 n种主武器 m种副武器 武器有k种属性 接下来n行 先给定当前主武器的综合分s1 再给定k种属性的值 接下来m行 先给定当前副武器的综合分s2 再给定k种属性的值 要 ...

  6. hdu 2167(状压dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2167 思路:经典的状压dp题,前后,上下,对角8个位置不能取,状态压缩枚举即可所有情况,递推关系是为d ...

  7. Engineer Assignment HDU - 6006 状压dp

    http://acm.split.hdu.edu.cn/showproblem.php?pid=6006 比赛的时候写了一个暴力,存暴力,过了,还46ms 那个暴力的思路是,预处理can[i][j]表 ...

  8. HDU 5823 (状压dp)

    Problem color II 题目大意 定义一个无向图的价值为给每个节点染色使得每条边连接的两个节点颜色不同的最少颜色数. 对于给定的一张由n个点组成的无向图,求该图的2^n-1张非空子图的价值. ...

  9. hdu 4739 状压DP

    这里有状态压缩DP的好博文 题目:题目比较神,自己看题目吧 分析: 大概有两种思路: 1.dfs,判断正方形的话可以通过枚举对角线,大概每次减少4个三角形,加上一些小剪枝的话可以过. 2.状压DP,先 ...

随机推荐

  1. ORA-00445: Background Process "xxxx" Did Not Start After 120 Seconds

    Recent linux kernels have a feature called Address Space Layout Randomization (ASLR).ASLR  is a feat ...

  2. D. Green and Black Tea 贪心 + 构造

    http://codeforces.com/contest/746/problem/D 首先说下一定是NO的情况. 假设a > b 那么,b最多能把a分成b + 1分,如果每份刚好是k的话,那么 ...

  3. Uediter的引用和取值

    页面应用Uediter控件,代码如下: <tr> <td align="center" class="xwnr_j"> <asp: ...

  4. ssm基础配置

    1.导包 <dependencies> <dependency> <groupId>org.springframework</groupId> < ...

  5. 聊聊mq的使用场景

    mq的作用 通过异步方式对系统解耦 增加系统的并发处理能力 通过异步方式对系统解耦 以用户注册为例,一般情况下: 分下一下,上面过程存在的一些问题: 注册过程会调用4个服务(注册服务.邮件服务.短信服 ...

  6. hihocoder offer收割编程练习赛11 B 物品价值

    思路: 状态压缩 + dp. 实现: #include <iostream> #include <cstdio> #include <cstring> #inclu ...

  7. [BZOJ2330][SCOI2011]糖果 差分约束系统+最短路

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2330 类似于题目中这种含有不等式关系,我们可以建立差分约束系统来跑最长路或最短路. 对于一 ...

  8. 详解Android Activity启动模式

    相关的基本概念: 1.任务栈(Task)   若干个Activity的集合的栈表示一个Task.   栈不仅仅只包含自身程序的Activity,它也可以跨应用包含其他应用的Activity,这样有利于 ...

  9. Collection接口框架图

    Java集合大致可分为Set.List和Map三种体系,其中Set代表无序.不可重复的集合:List代表有序.重复的集合:而Map则代表具有映射关系的集合.Java 5之后,增加了Queue体系集合, ...

  10. R in action读书笔记(17)第十二章 重抽样与自助法

    12.4 置换检验点评 除coin和lmPerm包外,R还提供了其他可做置换检验的包.perm包能实现coin包中的部分功能,因此可作为coin包所得结果的验证.corrperm包提供了有重复测量的相 ...