C - The Battle of Chibi

Description

Cao Cao made up a big army and was going to invade the whole South China. Yu Zhou was worried about it. He thought the only way to beat Cao Cao is to have a spy in Cao Cao's army. But all generals and soldiers of Cao Cao were loyal, it's impossible to convince any of them to betray Cao Cao.

So there is only one way left for Yu Zhou, send someone to fake surrender Cao Cao. Gai Huang was selected for this important mission. However, Cao Cao was not easy to believe others, so Gai Huang must leak some important information to Cao Cao before surrendering.

Yu Zhou discussed with Gai Huang and worked out N information to be leaked, in happening order. Each of the information was estimated to has ai value in Cao Cao's opinion.

Actually, if you leak information with strict increasing value could accelerate making Cao Cao believe you. So Gai Huang decided to leak exact M information with strict increasing value in happening order. In other words, Gai Huang will not change the order of the N information and just select M of them. Find out how many ways Gai Huang could do this.

Input

The first line of the input gives the number of test cases, T(1≤100). T test cases follow.

Each test case begins with two numbers N(1≤N≤103) and M(1≤M≤N), indicating the number of information and number of information Gai Huang will select. Then N numbers in a line, the ith number ai(1≤ai≤109) indicates the value in Cao Cao's opinion of the ith information in happening order.

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the ways Gai Huang can select the information.

The result is too large, and you need to output the result mod by 1000000007(109+7).

Sample Input

2
3 2
1 2 3
3 2
3 2 1

Sample Output

Case #1: 3
Case #2: 0 题意:给你n,m,n个数,让你找出长度为m的最长上升序列。
题解:我们先按照一般思路想:dp[i][j]表示长度j以a[i]结尾的上升子序列长度。
显然这个复杂度是n^3的,我们可以用树状数组优化一层遍历变为n^2*logn在这之前先对a离散化。
扫描一遍的同时,将a[j]的信息更新到树上,那么扫描就可以用 logn时间统计出k的信息.

///
#include<bits/stdc++.h>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,127,sizeof(a));
#define inf 1000000007
#define mod 1000000007
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){
if(ch=='-')f=-;ch=getchar();
}
while(ch>=''&&ch<=''){
x=x*+ch-'';ch=getchar();
}return x*f;
}
//************************************************
const int maxn=+; int sum[maxn][maxn],a[maxn],b[maxn],n,m;
int getsum(int k,int x){
int ans=;
while(x>){
ans=(ans+sum[k][x])%mod;
x-=(x&-x);
}
return ans;
}
void update(int k,int x,int pos){ while(x<maxn){
sum[k][x]=(sum[k][x]+pos)%mod;
x+=(x&-x);
}
}
int main(){
int oo=;
int T=read();
while(T--){
scanf("%d%d",&n,&m);
for (int i = ; i <= n; i++){
scanf("%d",&a[i]);
b[i]=a[i];
}
mem(sum);
sort(b + , b + + n);
for(int i=;i<=n;i++)
a[i]=lower_bound(b + , b + + n, a[i]) - b+;
update(,,);
int ans=,k;
for(int i=;i<=n;i++){
for(ans=,k=;k<m;k++){
ans=getsum(k,a[i]-);
if(ans==)break;
update(k+,a[i],ans);
}
}
printf("Case #%d: ",oo++);
cout<<(getsum(m,n+)+mod)%mod<<endl;
}
return ;
}

代码




2015南阳CCPC C - The Battle of Chibi DP树状数组优化的更多相关文章

  1. 2015南阳CCPC C - The Battle of Chibi DP

    C - The Battle of Chibi Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 无 Description Cao Cao made up a ...

  2. ccpc_南阳 C The Battle of chibi dp + 树状数组

    题意:给你一个n个数的序列,要求从中找出含m个数的严格递增子序列,求能找出多少种不同的方案 dp[i][j]表示以第i个数结尾,形成的严格递增子序列长度为j的方案数 那么最终的答案应该就是sigma( ...

  3. HDU 5542 - The Battle of Chibi - [离散化+树状数组优化DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5542 Problem DescriptionCao Cao made up a big army an ...

  4. hdu5542 The Battle of Chibi【树状数组】【离散化】

    The Battle of Chibi Time Limit: 6000/4000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Othe ...

  5. HDU - 5542 The Battle of Chibi(LIS+树状数组优化)

    The Battle of Chibi Cao Cao made up a big army and was going to invade the whole South China. Yu Zho ...

  6. HDU 6240 Server(2017 CCPC哈尔滨站 K题,01分数规划 + 树状数组优化DP)

    题目链接  2017 CCPC Harbin Problem K 题意  给定若干物品,每个物品可以覆盖一个区间.现在要覆盖区间$[1, t]$. 求选出来的物品的$\frac{∑a_{i}}{∑b_ ...

  7. 2015南阳CCPC F - The Battle of Guandu 多源多汇最短路

    The Battle of Guandu Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 无 Description In the year of 200, t ...

  8. 南阳ccpc C题 The Battle of Chibi && hdu5542 The Battle of Chibi (树状数组优化+dp)

    题意: 给你一个长度为n的数组,你需要从中找一个长度为m的严格上升子序列 问你最多能找到多少个 题解: 我们先对原序列从小到大排序,排序之后的序列就是一个上升序列 这里如果两个数相等的话,那么因为题目 ...

  9. 2015南阳CCPC D - Pick The Sticks 背包DP.

    D - Pick The Sticks Description The story happened long long ago. One day, Cao Cao made a special or ...

随机推荐

  1. error C2143: syntax error : missing ';' before '}'

    今天弄Tab控件,干了一件非常愚蠢的事,没有去声明头文件.这也是今天要记录的问题,提示如下各种 前面一个符号是错误的.如果初学者遇到,算作一个提示,记得声明新类的.h 头文件 标签空间再进一步.cpp ...

  2. Redis 它是什么?它用来做什么?它的优势与短板如何?

    阅读目的: 对什么是内存型数据库有概念性的认知.? Redis 是什么? 通常而言目前的数据库分类有几种,包括 SQL/NSQL,,关系数据库,键值数据库等等 等,分类的标准也不以,Redis本质上也 ...

  3. The APR based Apache Tomcat Native library which allows optimal performance in production environments was not found on the java.library.path: [C:\Program Files\Java\jdk1.8.0_60\bin;C:\Windows\Sun\Jav

    启动项目自动结束,查看日志发现 [ost-startStop-1] o.a.catalina.core.AprLifecycleListener   : The APR based Apache To ...

  4. 如何创建TWaver 3D的轮廓选中效果

    在一般的游戏中,物体的选中效果会是这样: TWaver 3D中,物体的默认的选中效果一般都是一个方方正正的外框.在HTML5的Mono版本中,TWaver提供了轮廓线样式的选中效果. 通过如下代码把几 ...

  5. poj - 3254 - Corn Fields (状态压缩)

    poj - 3254 - Corn Fields (状态压缩)超详细 参考了 @外出散步 的博客,在此基础上增加了说明 题意: 农夫有一块地,被划分为m行n列大小相等的格子,其中一些格子是可以放牧的( ...

  6. [USACO] 奶牛混合起来 Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  7. XML中的特殊(保留)字符数据

    XML中的特殊(保留)字符数据 制作人:全心全意 在XML文档中,有些字符会被XML解析器当作标记进行处理.如果希望把这些字符作为普通字符处理,就需要使用实体引用或CDATA段. 使用实体引用 为了避 ...

  8. HDU - 6158 The Designer

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6158 本题是一个计算几何题——四圆相切. 平面上的一对内切圆,半径分别为R和r.现在这一对内切圆之间,按 ...

  9. codechef营养题 第二弹

    第二弾が始まる! codechef problems 第二弹 一.Backup Functions 题面 One unavoidable problem with running a restaura ...

  10. 使用Mybatis的逆向工程自动生成代码

    1.逆向工程的作用 Mybatis 官方提供了逆向工程,可以针对数据库表自动生成Mybatis执行所需要的代码(包括mapper.xml.Mapper.java.pojo). 2.逆向工程的使用方法 ...