1822. Hugo II's War

Time limit: 0.5 second

Memory limit: 64 MB
The glorious King Hugo II has declared a war—a war that is holy, victorious, almost bloodless, but ruinous!
Right after declaring the war the king has started summoning the army. He plans to send a recruitment order to all his immediate vassals, who will send the order to their vassals, and so on. In the
end, every nobleman of the kingdom will be involved in the preparation for the war.
As soon as a nobleman who has no vassals receives the order, he immediately begins recruiting soldiers and joins his overlord in a few days. If a nobleman has vassals, he waits until there are at least x%
of his immediate vassals ready for the war, then summons his own troops and also joins his overlord. The glorious King Hugo II will go the war as soon as at least x% of his immediate vassals are ready.
King Hugo II wants to state the number x in his recruitment order. The king needs as many soldiers as possible for his military campaign. However, if the recruitment takes more than t days,
the enemy may learn about the imminent intrusion and strike first. Help Hugo II find the maximal possible value of x.

Input

The first line contains the number n of noblemen in the kingdom and the maximal number of days tthat can be spent for summoning the army (1 ≤ n ≤ 104;
0 ≤ t ≤ 106). The noblemen are numbered from 1 to n. King Hugo II has number 1, and the noblemen with numbers from 2 to n are described in the following n −
1 lines. The i-th of these lines describes the nobleman with number i and contains integers pi and ti,
where pi is the number of his overlord and ti is the number of days thei-th
nobleman will need to summon his troops (1 ≤ pi ≤ n; 0 ≤ ti ≤ 100).

Output

Output the maximal possible value of x with absolute error at most 10−4.

Sample

input output
6 3
1 2
2 2
2 1
1 2
1 4
50.00000000

题意:

输入 n 个人,3是表示有多少时间让编号1 的人召集人马。

然后按2到n 的编号 输入pi 和ti。各自是那个人直接 领主。和召集自己本部的人所需的时间。 编号1 是大领主 。

如果 每一个领主都仅仅能在 直属下属 有≥x% 的人召齐了人马才干够開始招自己的人。

问x最大是多少,能够让大领主在 t 的时间内 召齐自己的人出发打仗。

做法:

二分x,推断下这个x是否能在所需时间内召齐人马。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#include <vector> long long p[10010],t[10010];
long long nowt[10010];
long long pai[100010];
double x;
long long sum_t;
vector <long long >son[10010]; void dfs(long long nod)
{
if(son[nod].size()==0)
{
nowt[nod]=t[nod];
return ;
}
for(long long i=0;i<son[nod].size();i++)
dfs(son[nod][i]); long long need=ceil(1.0*son[nod].size()*x/100.0);//找到所需的最少人数是多少
for(long long i=0;i<son[nod].size();i++)
pai[i]=nowt[son[nod][i]]; sort(pai,pai+son[nod].size()); long long ret;
if(need==0)
ret=0;
else
ret=pai[need-1]; //手下的人中,花费最长时间的那个人 nowt[nod]=ret+t[nod];
} long long deal()
{
dfs(1);
if(nowt[1]>sum_t)
return 0;
else
return 1; }
int main()
{
long long n;
while(scanf("%I64d%I64d",&n,&sum_t)!=EOF)
{
for(long long i=1;i<=n;i++)
son[i].clear();
for(long long i=2;i<=n;i++)
{
scanf("%I64d%I64d",p+i,t+i);
son[p[i]].push_back(i);
} double l=0,r=100;//
double mid;
while(abs(r-l)>0.0001)
{
mid=(l+r)/2.0;
x=mid;
if(deal()==0)//所需时间大于 sum_t
r=mid;
else
l=mid;
}
printf("%.7lf\n",l);
}
return 0;
}

URAL 1822. Hugo II&#39;s War 树的结构+二分的更多相关文章

  1. BestCoder Round #65 HDOJ5592 ZYB&#39;s Premutation(树状数组+二分)

    ZYB's Premutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  2. [杂题]URAL1822. Hugo II's War

    看懂题意的请直接跳过下一坨! 本人有表达障碍! ========================================== 题意: (题意真的很难很难懂啊!!!  去他娘的**) 有一个王国 ...

  3. 【bzoj2402】陶陶的难题II 分数规划+树链剖分+线段树+STL-vector+凸包+二分

    题目描述 输入 第一行包含一个正整数N,表示树中结点的个数.第二行包含N个正实数,第i个数表示xi (1<=xi<=10^5).第三行包含N个正实数,第i个数表示yi (1<=yi& ...

  4. 浅谈oracle树状结构层级查询测试数据

    浅谈oracle树状结构层级查询 oracle树状结构查询即层次递归查询,是sql语句经常用到的,在实际开发中组织结构实现及其层次化实现功能也是经常遇到的,虽然我是一个java程序开发者,我一直觉得只 ...

  5. hdu4729 树链剖分+二分

    An Easy Problem for Elfness Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (J ...

  6. 【51nod1462】树据结构

    Source and Judge 51nod1462 Analysis 请先思考后再展开 dffxtz师兄出的题 做法一:暴力树剖+分块,时间复杂度为 $O(nlognsqrt n)$ 做法二:利用矩 ...

  7. 树状结构Java模型、层级关系Java模型、上下级关系Java模型与html页面展示

    树状结构Java模型.层级关系Java模型.上下级关系Java模型与html页面展示 一.业务原型:公司的组织结构.传销关系网 二.数据库模型 很简单,创建 id 与 pid 关系即可.(pid:pa ...

  8. 分享使用NPOI导出Excel树状结构的数据,如部门用户菜单权限

    大家都知道使用NPOI导出Excel格式数据 很简单,网上一搜,到处都有示例代码. 因为工作的关系,经常会有处理各种数据库数据的场景,其中处理Excel 数据导出,以备客户人员确认数据,场景很常见. ...

  9. 由简入繁实现Jquery树状结构

    在项目中,我们经常会需要一些树状结构的样式来显示层级结构等,比如下图的样式,之前在学.net的时候可以直接拖个服务端控件过来直接使用非常方便.但是利用Jquery的一些插件,也是可以实现这些效果的,比 ...

随机推荐

  1. ProcessBar 与SeekBar进度条

    1.进度条关键属性 2.进度条的常用方法 progress = (ProgressBar) findViewById(R.id.horiz); (1)获取第一进度条:progress.getProgr ...

  2. Caffe RPN:把RPN网络layer添加到caffe基础结构中

    在测试MIT Scene Parsing Benchmark (SceneParse150)使用FCN网络时候,遇到Caffe错误. 遇到错误:不可识别的网络层crop 网络层 CreatorRegi ...

  3. HWND CWND 转换

    一.区别HWND是句柄,CWnd是MFC窗体类,CWnd中包含HWND句柄成员对象是m_hWnd.HWND是Windows系统中对所有窗口的一种标识,即窗口句柄.这是一个SDK概念.   CWnd是M ...

  4. CAD如何设置系统变量

    主要用到函数说明: MxDrawXCustomFunction::Mx_SetSysVar 设置系统变量.详细说明如下: 参数 说明 CString sVarName 系统变量名 Value 需要设置 ...

  5. for循环,字典遍历(一)

    #items(): 返回字典中所有 key.value #keys(): 返回字典中所有 key 的列表 #values():返回字典中所有 value 的列表 my_dict = {'语文':89, ...

  6. css--小白入门篇6(终)

    一.相对定位 定位有三种,分别是相对定位.绝对定位.固定定位. 相对定位: 1 position:relative; 绝对定位: 1 position:absolute; 固定定位: 1 positi ...

  7. Dollar Dayz POJ - 3181

    解法 完全背包+大数...不想写大数了放个python得了 代码 dp=[0 for i in range(2000)] n,k=map(int,input().split()) num=[i for ...

  8. notepad++使用NppFTP连接linux,编写shell脚本无法保存上传的问题

    下载安装NppFTP插件之后,重启打开notepad++连接到linux主机,之后进行编辑shell脚本,出现无法保存上传至linux主机的问题. 分析的原因:可能的原因是Windows防火墙阻止了应 ...

  9. Nginx + Lets'encrypt 实现HTTPS访问七牛空间资源

    上一篇文章 为七牛云存储空间绑定自定义域名,并使用七牛云提供的免费SSL证书,将自定义加名升级为HTTPS 我们提到利用七牛的免费SSL证书,将自定义加名升级为HTTPS的方法. 不知道有没有小伙伴会 ...

  10. Java 中 break和 continue 的使用方法及区别

    break break可用于循环和switch...case...语句中. 用于switch...case中: 执行完满足case条件的内容内后结束switch,不执行下面的语句. eg: publi ...