UOJ 34 多项式乘法 ——NTT
【题目分析】
快速数论变换的模板题目。
与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根。
然后和fft一样写就好了,没有精度误差,但是跑起来比较慢。
这破题目改了好长时间,吃枣药丸。
【代码】
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int md=998244353;
const int g=3;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define maxn 400005
int n,m,rev[maxn],len=0,top;
int a[maxn],b[maxn],c[maxn]; int _pow(int a,int b)
{
int ret=1;
while (b)
{
if (b&1) ret=(ll)ret*a%md;
a=(ll)a*a%md;
b>>=1;
}
return ret;
} void NTT(int * x,int n,int f)
{
F(i,0,n-1) if (rev[i]>i) swap(x[i],x[rev[i]]);
for (int m=2;m<=n;m<<=1)
{
int wn=_pow(g,(md-1)/m);
if (f) wn=_pow(wn,md-2);
for (int i=0;i<n;i+=m)
{
int w=1;
F(j,0,(m>>1)-1)
{
int u=x[i+j],v=(ll)x[i+j+(m>>1)]*w%md;
x[i+j]=(u+v)%md;
x[i+j+(m>>1)]=((u-v)%md+md)%md;
w=(ll)w*wn%md;
}
}
}
} int main()
{
scanf("%d%d",&n,&m);
F(i,0,n) scanf("%d",&a[i]);
F(i,0,m) scanf("%d",&b[i]);
n=n+m+1;m=1;
top=n+m-1;
while (m<=n) m<<=1,len++; n=m;
F(i,0,n-1)
{
int ret=0,t=i;
F(j,1,len) ret<<=1,ret|=t&1,t>>=1;
rev[i]=ret;
}
NTT(a,n,0); NTT(b,n,0);
F(i,0,n-1) c[i]=(ll)a[i]*b[i]%md;
NTT(c,n,1);
int tmp=_pow(n,md-2);
F(i,0,top-1) printf("%d ",(ll)c[i]*tmp%md);
}
UOJ 34 多项式乘法 ——NTT的更多相关文章
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- Android学习总结(七)———— 本地广播
一.本地广播 2.1 基本概念 由于之前的广播都是全局的,所有应用程序都可以接收到,这样就很容易会引起安全性的问题,比如说我们发送一些携带关键性数据的广播有可能被其他的应用程序截获,或者其他的程序不停 ...
- vba 两个表 信息合体一个表格
1 把Excel某一区域的内容读入到数组中: Dim strArray() As Variant Dim wk_data As Variant Set wk_data = Sheets("S ...
- java 核心技术卷一笔记 6 .1接口 lambda 表达式 内部类
6.1 接口不是类,是对类的一组需求的描述,这些类需要遵守接口描述的统一格式进行定义.例如:Arrays类中sort方法(可以对对象数组进行排序)前提是对象所属的类必须实现了Comparable 接口 ...
- 4个Linux服务器监控工具
下面是我想呈现给你的4个强大的监控工具. htop – 交互式进程查看器 你可能知道在机器上查看实时进程的标准工具top.如果不知道,请运行$ top看看,运行$ man top阅读帮助手册. hto ...
- 通过例子理解 k8s 架构【转】
为了帮助大家更好地理解 Kubernetes 架构,我们部署一个应用来演示各个组件之间是如何协作的. 执行命令 kubectl run httpd-app --image=httpd --replic ...
- Caused by: java.lang.IllegalStateException: Ambiguous mapping. Cannot map 'userController' method
在使用SpringMVC的时候遇到了这个问题 问题原因: 在指定方法所对应的url地址的时候重复了, 也就是@RequestMapping("url")中, 两个方法使用了同一个 ...
- 在64位的linux中运行32位的应用程序
常规做法,先添加32bit架构: sudo dpkg --add-architecture i386 sudo apt-get update sudo apt-get install libc6:i3 ...
- react入门(上)
1. ReactJS是什么? 1). Facebook开源的一个js库 2). 一个用于动态构建用户界面的js库2. React的特点 * Declarative(声明式编码) * Component ...
- Centos6.9 搭建rsync服务端与客户端 案例:全网备份项目
rsync的企业工作场景说明 1)定时备份 1.1生产场景集群架构服务器备份方案项目 借助cron+rsync把所有客户服务器数据同步到备份服务器 2)实时复制 本地数据传输模式(local-only ...
- C语言之结构体、联合体
结构体 1,结构体即为多个基本数据类型组合而成的数据类型.结构体本质上同int等一样同为数据类型,可以定义变量,内部成员不能直接赋值. struct Man { ; ; }; 上面是错误的.正确写法 ...