【题目分析】

快速数论变换的模板题目。

与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根。

然后和fft一样写就好了,没有精度误差,但是跑起来比较慢。

这破题目改了好长时间,吃枣药丸。

【代码】

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int md=998244353;
const int g=3;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define maxn 400005
int n,m,rev[maxn],len=0,top;
int a[maxn],b[maxn],c[maxn]; int _pow(int a,int b)
{
int ret=1;
while (b)
{
if (b&1) ret=(ll)ret*a%md;
a=(ll)a*a%md;
b>>=1;
}
return ret;
} void NTT(int * x,int n,int f)
{
F(i,0,n-1) if (rev[i]>i) swap(x[i],x[rev[i]]);
for (int m=2;m<=n;m<<=1)
{
int wn=_pow(g,(md-1)/m);
if (f) wn=_pow(wn,md-2);
for (int i=0;i<n;i+=m)
{
int w=1;
F(j,0,(m>>1)-1)
{
int u=x[i+j],v=(ll)x[i+j+(m>>1)]*w%md;
x[i+j]=(u+v)%md;
x[i+j+(m>>1)]=((u-v)%md+md)%md;
w=(ll)w*wn%md;
}
}
}
} int main()
{
scanf("%d%d",&n,&m);
F(i,0,n) scanf("%d",&a[i]);
F(i,0,m) scanf("%d",&b[i]);
n=n+m+1;m=1;
top=n+m-1;
while (m<=n) m<<=1,len++; n=m;
F(i,0,n-1)
{
int ret=0,t=i;
F(j,1,len) ret<<=1,ret|=t&1,t>>=1;
rev[i]=ret;
}
NTT(a,n,0); NTT(b,n,0);
F(i,0,n-1) c[i]=(ll)a[i]*b[i]%md;
NTT(c,n,1);
int tmp=_pow(n,md-2);
F(i,0,top-1) printf("%d ",(ll)c[i]*tmp%md);
}

  

UOJ 34 多项式乘法 ——NTT的更多相关文章

  1. UOJ#34. 多项式乘法(NTT)

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...

  2. [UOJ#34]多项式乘法

    [UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...

  3. 2018.11.14 uoj#34. 多项式乘法(ntt)

    传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...

  4. ●UOJ 34 多项式乘法

    题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...

  5. 【刷题】UOJ #34 多项式乘法

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...

  6. UOJ 34 多项式乘法 FFT 模板

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...

  7. 2018.11.14 uoj#34. 多项式乘法(fft)

    传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...

  8. UOJ 34: 多项式乘法(FFT模板题)

    关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...

  9. [UOJ 0034] 多项式乘法

    #34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...

随机推荐

  1. Eclipse下对MAVEN进行junit软件测试

    一.Maven project management and build automation tool, more and more developers use it to manage the ...

  2. UVA 427 The Tower of Babylon 巴比伦塔(dp)

    据说是DAG的dp,可用spfa来做,松弛操作改成变长.注意状态的表示. 影响决策的只有顶部的尺寸,因为尺寸可能很大,所以用立方体的编号和高的编号来表示,然后向尺寸更小的转移就行了. #include ...

  3. JS常用操作节点的方法

    js常见的创建dom节点的方法有 createElement() 创建一个元素节点 => 接收参数为string类型的nodename createTextNode() 创建一个文本节点 =&g ...

  4. Airbnb:别抵制我,宝宝要过 10 岁生日

    今日导读 喜欢旅游的你,一定听说或使用过 airbnb(爱彼迎),在出发前打开它,总是能通过它开始一段奇妙的旅行.可是最近,就在这个打着“共享家”概念的服务型网站正迎来十周年之际,它却遭到了很多国家的 ...

  5. 引入了junit为什么还是用不了@Test注解

    pom文件明明引入了unit,为什么还是用不了@Test? 配置如下: <dependency> <groupId>junit</groupId> <arti ...

  6. What is the difference between try/except and assert?

    assert only check if a condition is true or not and throw an exception. A try/except block can run a ...

  7. Spring框架中的aop操作之一 及aspectjweaver.jar与aopalliance-1.0.jar下载地址 包含beans 注解context 和aop的约束

    (aspect oriented programming面向切面编程) 首先在原有的jar包: 需Spring压缩包中的四个核心JAR包 beans .context.core 和expression ...

  8. 004 html常用标签

    html常用标签 1.无语义标签 <div></div> <span></span> 2.常用语义标签 <hn></hn> 标题 ...

  9. 十:MYSQL中的事务

    前言: 因为没有多少时间和精力,目前无法深入研究数据库中的事务,比如 但是,对于事务的一些基本知识,还是需要牢牢掌握的,做到了解事务的基本常识,在实际开发中能够理解各个持久层框架对事务的处理 一:是么 ...

  10. Web框架之Django_01初识(三大主流web框架、Django安装、Django项目创建方式及其相关配置、Django基础三件套:HttpResponse、render、redirect)

    摘要: Web框架概述 Django简介 Django项目创建 Django基础必备三件套(HttpResponse.render.redirect) 一.Web框架概述: Python三大主流Web ...