UOJ 34 多项式乘法 ——NTT
【题目分析】
快速数论变换的模板题目。
与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根。
然后和fft一样写就好了,没有精度误差,但是跑起来比较慢。
这破题目改了好长时间,吃枣药丸。
【代码】
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int md=998244353;
const int g=3;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define maxn 400005
int n,m,rev[maxn],len=0,top;
int a[maxn],b[maxn],c[maxn]; int _pow(int a,int b)
{
int ret=1;
while (b)
{
if (b&1) ret=(ll)ret*a%md;
a=(ll)a*a%md;
b>>=1;
}
return ret;
} void NTT(int * x,int n,int f)
{
F(i,0,n-1) if (rev[i]>i) swap(x[i],x[rev[i]]);
for (int m=2;m<=n;m<<=1)
{
int wn=_pow(g,(md-1)/m);
if (f) wn=_pow(wn,md-2);
for (int i=0;i<n;i+=m)
{
int w=1;
F(j,0,(m>>1)-1)
{
int u=x[i+j],v=(ll)x[i+j+(m>>1)]*w%md;
x[i+j]=(u+v)%md;
x[i+j+(m>>1)]=((u-v)%md+md)%md;
w=(ll)w*wn%md;
}
}
}
} int main()
{
scanf("%d%d",&n,&m);
F(i,0,n) scanf("%d",&a[i]);
F(i,0,m) scanf("%d",&b[i]);
n=n+m+1;m=1;
top=n+m-1;
while (m<=n) m<<=1,len++; n=m;
F(i,0,n-1)
{
int ret=0,t=i;
F(j,1,len) ret<<=1,ret|=t&1,t>>=1;
rev[i]=ret;
}
NTT(a,n,0); NTT(b,n,0);
F(i,0,n-1) c[i]=(ll)a[i]*b[i]%md;
NTT(c,n,1);
int tmp=_pow(n,md-2);
F(i,0,top-1) printf("%d ",(ll)c[i]*tmp%md);
}
UOJ 34 多项式乘法 ——NTT的更多相关文章
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- java+spring 执行器
A 通过MethodInvokingJobDetailFactoryBean类实现 spring配置文件里增加执行器配置 <bean id="ammoDue" class=& ...
- sort函数的使用
此篇当作自己的笔记(水平太菜,这都一直没搞明白) sort()函数的用法1)sort函数包含在头文件<algroithm>中,还要结合using namespace std2)sort有三 ...
- CPP-基础:String类
已知类String的原型为: class String { public: String(const char *str = NULL); // 普通构造函数 String(const String ...
- 学习笔记之30个常用的maven命令
maven 命令的格式为 mvn [plugin-name]:[goal-name],可以接受的参数如下, -D 指定参数,如 -Dmaven.test.skip=true 跳过单元测试: -P 指定 ...
- Java--返回类的对象(return this)
如下代码所示: public Book getBook(){ return this; } 在getBook()方法中,方法的返回值为Book类,所以方法体中使用 return this 这种形式返回 ...
- CF-1082(渣渣只做了前三个)
链接:http://codeforces.com/contest/1082 A. Vasya and Book 题意: n,x,y,d 一本电子书有n页,每一次翻动只能往前或者往后翻d页.求x-> ...
- NOIP 成绩
这道题中点是在小数上,因为成绩可能是:“95.5 87.7……”所以我们就要用:printf和scanf这样就可以控制小数了!!! code: #include<bits/stdc++.h> ...
- 无法解析具体reference那个同名文件
公司平台,如果src和gen文件系统中有同名文件.reference时会根据depend.cfg文件优先reference遇到的同名文件.这样如果存在同名文件且引用顺序不对就会有莫名的bug. 像rt ...
- php数据查询之基础查询
---恢复内容开始--- 数据查询语言(Data Query Language) 基本查询 语法形式: select [all | distinct ] 字段或者表达式列表 [from子句] [whe ...
- laravel富文本编辑和图片上传
---恢复内容开始--- 首先先找到一个适合的编辑器是胜利的一步,选择wangEditor这个编辑器 地址:http://www.wangeditor.com/ 然后选择下载,我是通过网上学习的,所以 ...