[USACO09JAN]全流Total Flow
题目描述
Farmer John always wants his cows to have enough water and thus has made a map of the N (1 <= N <= 700) water pipes on the farm that connect the well to the barn. He was surprised to find a wild mess of different size pipes connected in an apparently haphazard way. He wants to calculate the flow through the pipes.
Two pipes connected in a row allow water flow that is the minimum of the values of the two pipe's flow values. The example of a pipe with flow capacity 5 connecting to a pipe of flow capacity 3 can be reduced logically to a single pipe of flow capacity 3:
+---5---+---3---+ -> +---3---+
Similarly, pipes in parallel let through water that is the sum of their flow capacities:
+---5---+
---+ +--- -> +---8---+
+---3---+
Finally, a pipe that connects to nothing else can be removed; it contributes no flow to the final overall capacity:
+---5---+
---+ -> +---3---+
+---3---+--
All the pipes in the many mazes of plumbing can be reduced using these ideas into a single total flow capacity.
Given a map of the pipes, determine the flow capacity between the well (A) and the barn (Z).
Consider this example where node names are labeled with letters:
+-----------6-----------+
A+---3---+B +Z
+---3---+---5---+---4---+
C D
Pipe BC and CD can be combined:
+-----------6-----------+
A+---3---+B +Z
+-----3-----+-----4-----+
D Then BD and DZ can be combined:
+-----------6-----------+
A+---3---+B +Z
+-----------3-----------+
Then two legs of BZ can be combined:
B A+---3---+---9---+Z
Then AB and BZ can be combined to yield a net capacity of 3:
A+---3---+Z
Write a program to read in a set of pipes described as two endpoints and then calculate the net flow capacity from 'A' to 'Z'. All
networks in the test data can be reduced using the rules here.
Pipe i connects two different nodes a_i and b_i (a_i in range
'A-Za-z'; b_i in range 'A-Za-z') and has flow F_i (1 <= F_i <= 1,000). Note that lower- and upper-case node names are intended to be treated as different.
The system will provide extra test case feedback for your first 50 submissions.
约翰总希望他的奶牛有足够的水喝,因此他找来了农场的水管地图,想算算牛棚得到的水的 总流量.农场里一共有N根水管.约翰发现水管网络混乱不堪,他试图对其进行简 化.他简化的方式是这样的:
两根水管串联,则可以用较小流量的那根水管代替总流量.
两根水管并联,则可以用流量为两根水管流量和的一根水管代替它们
当然,如果存在一根水管一端什么也没有连接,可以将它移除.
请写个程序算出从水井A到牛棚Z的总流量.数据保证所有输入的水管网络都可以用上述方法 简化.
输入输出格式
输入格式:
Line 1: A single integer: N
- Lines 2..N + 1: Line i+1 describes pipe i with two letters and an integer, all space-separated: a_i, b_i, and F_i
输出格式:
- Line 1: A single integer that the maximum flow from the well ('A') to the barn ('Z')
输入输出样例
5
A B 3
B C 3
C D 5
D Z 4
B Z 6
3
#include<cstdio>
#include<cstring>
#define inf 100000000
int n,s,t,tw;
int a,b,c;
char ch[],cn[];
int h[],hs=;
struct edge{int s,n,w;}e[];
int d[],q[],head,tail;
inline int min(int x,int y){return x<y?x:y;}
void bfs(){
memset(d,,sizeof(d));
head=tail=;
d[s]=,q[head++]=s;
while(head>tail){
a=q[tail++];
for(int i=h[a];i;i=e[i].n)
if(!d[e[i].s]&&e[i].w){
d[e[i].s]=d[a]+;
if(e[i].s==t) return;
q[head++]=e[i].s;
}
}
}
int ap(int k,int w){
if(k==t) return w;
int uw=w;
for(int i=h[k];i&&uw;i=e[i].n)
if(e[i].w&&d[e[i].s]==d[k]+){
int wt=ap(e[i].s,min(uw,e[i].w));
if(wt) e[i].w-=wt,e[i^].w+=wt,uw-=wt;
else d[e[i].s]=;
}
return w-uw;
}
bool Dinic(){
bfs();
if(!d[t]) return ;
tw+=ap(s,inf);
return ;
}
int main(){
scanf("%d",&n);
s='A',t='Z';
while(n--){
scanf("%s%s%d",ch,cn,&c);
a=ch[],b=cn[];
e[++hs]=(edge){b,h[a],c},h[a]=hs;
e[++hs]=(edge){a,h[b],c},h[b]=hs;
}
while(Dinic());
printf("%d\n",tw);
return ;
}
我终于能顺手的,顺手A了,网络流真心好实现。
题目来源:洛谷
[USACO09JAN]全流Total Flow的更多相关文章
- 2018.07.06 洛谷P2936 [USACO09JAN]全流Total Flow(最大流)
P2936 [USACO09JAN]全流Total Flow 题目描述 Farmer John always wants his cows to have enough water and thus ...
- AC日记——[USACO09JAN]全流Total Flow 洛谷 P2936
题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...
- 洛谷——P2936 [USACO09JAN]全流Total Flow
题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...
- 洛谷 P2936 [USACO09JAN]全流Total Flow
题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...
- 【luogu P2936 [USACO09JAN]全流Total Flow】 题解
题目链接:https://www.luogu.org/problemnew/show/P2936 菜 #include <queue> #include <cstdio> #i ...
- P2936(BZOJ3396) [USACO09JAN]全流Total Flow[最大流]
题 裸题不多说,在网络流的练习题里,你甚至可以使用暴力. #include<bits/stdc++.h> using namespace std; typedef long long ll ...
- [USACO09JAN]Total Flow【网络流】
Farmer John always wants his cows to have enough water and thus has made a map of the N (1 <= N & ...
- BZOJ3396: [Usaco2009 Jan]Total flow 水流
3396: [Usaco2009 Jan]Total flow 水流 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 45 Solved: 27[Sub ...
- Openvswitch原理与代码分析(5): 内核中的流表flow table操作
当一个数据包到达网卡的时候,首先要经过内核Openvswitch.ko,流表Flow Table在内核中有一份,通过key查找内核中的flow table,即可以得到action,然后执行acti ...
随机推荐
- redis 缓存应用
第1章 部署与安装 wget http://download.redis.io/releases/redis-3.2.10.tar.gz tar xf redis-3.2.10.tar.gz cd r ...
- Storm概念学习系列之storm的可靠性
这个概念,对于理解storm很有必要. 1.worker进程死掉 worker是真实存在的.可以jps查看. 正是因为有了storm的可靠性,所以storm会重新启动一个新的worker进程. 2.s ...
- Spring Boot (31) 数据验证
曾经参数的验证是这样的: public String test(User user){ if(user == null){ throw new NullPointerException("u ...
- 继承static的注意点
继承static的注意点 singleton模式会使用 <?php class Auth { protected static $_instance = null; /** * 单用例入口 * ...
- Android开发: 关于性能需要考虑的
刚做Android开发时,只管完成任务,将需求完成,以能完成一款界面酷炫的app为自豪.然而,随着代码量的增加,越来越意识到,一款成功的移动端产品,光有酷炫的外衣还不够,还需要在各方面都优秀. 试想, ...
- HDU_2844_(多重背包)
Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- Anniversary Cake
Anniversary Cake Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 15704 Accepted: 5123 ...
- redis的安装和使用【2】redis的java操作
修改redis.conf# 配置绑定ip,作者机子为192.168.100.192,请读者根据实际情况设置bind 192.168.100.192#非保护模式protected-mode no保存重启 ...
- 从输入URL到网页呈现的过程
1.域名解析当我们在浏览器中输入一个URL,例如”www.google.com”时,这个地址并不是谷歌网站真正意义上的地址.互联网上每一台计算机的唯一标识是它的IP地址,因此我们输入的网址首先需要先解 ...
- 取得数据库中数据 查询条件where使用规则
string where = string.Format("DnX < {0} and DnD > {0} and Types = '{1}' and Type1 = '{2}' ...