Portal

Description

给出一个\(n(n\leq10^5)\)的正整数序列\(\{a_n\}(a_i\leq10^{15})\)和正整数\(d(d\leq10^9)\),求\(\{a_n\}\)的一个子序列\(\{b_m\}\),使得\(\forall i\in[1,m-1],|b_i-b_{i-1}|\geq d\)。

Solution

跟求最长上升子序列的方法差不多。\(f[i]\)表示目前以数值\(i\)结尾的满足要求的序列长度,则:

\[ f[i]=max\{f[j]\}+1 \quad (j\leq i-d \vee j\geq i+d) $$因为$a_i$比较大,所以先离散化一波。离散化之后求$j\leq i-d \vee j\geq i+d$时,二分一下即可,不会增加复杂度。可以用树状数组来维护$f[i]$的前缀与后缀,不过我很懒就写了线段树。
> 时间复杂度$O(nlogn)$。

##Code
```cpp
//Pillars
#include <algorithm>
#include <cstdio>
#include <queue>
using namespace std;
typedef long long lint;
typedef std::pair<lint,int> pairI;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline lint read()
{
lint x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
int const N=2e5+10;
int n,d,n0; lint h[N],map[N];
int rt,cnt,ch[N][2]; pairI maxV[N];
void update(int p) {maxV[p]=max(maxV[ch[p][0]],maxV[ch[p][1]]);}
lint L,R;
void ins(int p,lint L0,lint R0,pairI x)
{
if(L==L0&&R0==L) {maxV[p]=x; return;}
for(int i=0;i<2;i++) if(!ch[p][i]) ch[p][i]=++cnt;
lint mid=L0+R0>>1;
if(L<=mid) ins(ch[p][0],L0,mid,x);
else ins(ch[p][1],mid+1,R0,x);
update(p);
}
pairI query(int p,lint L0,lint R0)
{
if(L<=L0&&R0<=R) return maxV[p];
for(int i=0;i<2;i++) if(!ch[p][i]) ch[p][i]=++cnt;
lint mid=L0+R0>>1; pairI r=pairI(0,0);
if(L<=mid) r=max(r,query(ch[p][0],L0,mid));
if(mid<R) r=max(r,query(ch[p][1],mid+1,R0));
return r;
}
int ans,seq[N],pre[N];
int main()
{
n=read(),d=read();
for(int i=1;i<=n;i++) map[i]=h[i]=read();
sort(map+1,map+n+1); n0=unique(map+1,map+n+1)-map-1;
for(int i=1;i<=n;i++) h[i]=lower_bound(map+1,map+n0+1,h[i])-map;
rt=++cnt;
for(int i=1;i<=n;i++)
{
int x=upper_bound(map+1,map+n0+1,map[h[i]]-d)-map-1;
int y=lower_bound(map+1,map+n0+1,map[h[i]]+d)-map;
int len=0; pairI t=pairI(0,0);
L=1,R=x; if(L<=R) t=query(rt,1,n0);
if(t.first>len) len=t.first,pre[i]=t.second;
L=y,R=n0; if(L<=R) t=query(rt,1,n0);
if(t.first>len) len=t.first,pre[i]=t.second;
L=h[i],ins(rt,1,n0,pairI(len+1,i));
}
L=1,R=n0; pairI t=query(rt,1,n0);
ans=t.first; printf("%d\n",ans);
for(int i=ans,x=t.second;i>=1;i--,x=pre[x]) seq[i]=x;
for(int i=1;i<=ans;i++) printf("%d ",seq[i]); puts("");
return 0;
}
```

##P.S.
老师留的那天忘记写了...真是怠惰啊
一开始懒到不想写离散化于是开了个$10^{15}$的动态开点线段树,结果`MLE`了。\]

Codeforces474E - Pillars的更多相关文章

  1. Codeforces 474 E. Pillars

    水太...... E. Pillars time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. Grains 与 Pillars

    Grains 与 Pillars Grains介绍 Grains接口是salt用来采集底层系统信息的,包含了操作系统信息.域名.IP地址.内核.内存等一些底层信息.就是因为grains采集了这些信息, ...

  3. Codeforces Round #271 (Div. 2) E. Pillars 线段树优化dp

    E. Pillars time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  4. 【BZOJ 4148】 4148: [AMPPZ2014]Pillars (乱搞)

    4148: [AMPPZ2014]Pillars Time Limit: 5 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 100  Solve ...

  5. [CF 474E] Pillars (线段树+dp)

    题目链接:http://codeforces.com/contest/474/problem/F 意思是给你两个数n和d,下面给你n座山的高度. 一个人任意选择一座山作为起始点,向右跳,但是只能跳到高 ...

  6. 【CF】474E Pillars

    H的范围是10^15,DP方程很容易想到.但是因为H的范围太大了,而n的范围还算可以接受.因此,对高度排序排重后.使用新的索引建立线段树,使用线段树查询当前高度区间内的最大值,以及该最大值的前趋索引. ...

  7. Codeforces 474E - Pillars

    一眼看上去非常像最长不下降子序列. 然后比赛的时候对每个答案长度为k的序列,维护最后一个数的最大值和最小值. 当时不知道为什么认为从长度最长倒推至前面不会太长,于是心满意足地敲了个O(n^2).结果T ...

  8. Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)

    题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...

  9. html5 Websockets development guidance

    1. WebSockets -- full-duplex communication The main HTML5 pillars include Markup, CSS3, and JavaScri ...

随机推荐

  1. Windows API函数大全三

    7. API之位图.图标和光栅运算函数 BitBlt 将一幅位图从一个设备场景复制到另一个 CopyIcon 制作指定图标或鼠标指针的一个副本.这个副本从属于发出调用的应用程序 CopyImage 复 ...

  2. Spring的校验(Validator)

    使用Spring校验的大体流程: 最首先要有配置文件xml的支持(spring_validate.xml).(当然在web.xml中要有对该xml的体现) <beans xmlns=" ...

  3. BigDecimal取余运算

    取余运算在编程中运用非常广泛,对于BigDecimal对象取余运算可以通过divideAndRemainder方法实现. public BigDecimal[] divideAndRemainder( ...

  4. 开发原生安卓cordova插件(有原生界面)

    上文开发的插件没有调用原生界面,本文介绍开发带有activity的插件 本文很多操作与上文重复,重复部分会省略 首先打开plug1,先开发插件的原生代码 在以下命名空间创建一个activity 名称为 ...

  5. iOS UI异步更新:dispatch_async 与 dispatch_get_global_queue 的使用方法

    GCD (Grand Central Dispatch) 是Apple公司开发的一种技术,它旨在优化多核环境中的并发操作并取代传统多线程的编程模式. 在Mac OS X 10.6和IOS 4.0之后开 ...

  6. QProcess执行带管道的shell命令

    QStringList options; options << "-c" << "ls -l | grep a | sort"; QPr ...

  7. Struts2 前端与后台之间传值问题

    老是被前端与后台之间的传值给弄糊涂了,特此写一篇blog进行总结. 一. 前端向后台传值 (1)属性驱动 属性驱动是指在Action类里,包含表单里对应的字段(字段名称一样),同时设置对应的gette ...

  8. UVA 11419 SAM I AM (最小点覆盖,匈牙利算法)

    题意:给一个r*c的矩阵,某些格子中可能有一些怪物,可以在一行或一列防止一枚大炮,大炮会扫光整行/列的怪,问最少需要多少炮?输出炮的位置. 思路: 先每行和列都放一个炮,把炮当成点,把怪当成边,一边连 ...

  9. (译)IOS block编程指南 2 block开始

    Getting Started with Blocks(开始block) The following sections help you to get started with blocks usin ...

  10. 5 秒创建 k8s 集群[转]

    据说 Google 的数据中心里运行着超过 20 亿个容器,而且 Google 十年前就开始使用容器技术. 最初,Google 开发了一个叫 Borg 的系统(现在命令为 Omega)来调度如此庞大数 ...