C. Geometric Progression
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

Input

The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

Output

Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

Sample test(s)
input
5 2
1 1 2 2 4
output
4
input
3 1
1 1 1
output
1
input
10 3
1 2 6 2 3 6 9 18 3 9
output
6
Note

In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

维护当前数字a[i]的前面a[i]/k的数量

维护当前数字a[i]的后面a[i]*k的数量

那么答案就是:

/* ***********************************************
Author : PK29
Created Time :2015/8/25 10:52:52
File Name :4.cpp
************************************************ */
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <iomanip>
#include <list>
#include <deque>
#include <stack>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 200000+10
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std; bool cmp(int a,int b){
return a>b;
}
map<ll,ll>m1;
map<ll,ll>m2;
map<ll,ll>m3;
ll a[maxn];
int main()
{
#ifndef ONLINE_JUDGE
//freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
int n,k;
while(cin>>n>>k){
m1.clear();
m2.clear();
m3.clear();
for(int i=;i<=n;i++){
scanf("%I64d",&a[i]);
if(a[i]%k==)
m2[i]+=m1[a[i]/k];
m1[a[i]]++;
}
m1.clear();
for(int i=n;i>=;i--){
m3[i]+=m1[a[i]*k];
m1[a[i]]++;
}
ll sum=;
for(int i=;i<=n;i++){
sum+=m2[i]*m3[i];
}
printf("%I64d\n",sum);
}
return ;
}

Codeforces Round #Pi (Div. 2) C. Geometric Progression的更多相关文章

  1. map Codeforces Round #Pi (Div. 2) C. Geometric Progression

    题目传送门 /* 题意:问选出3个数成等比数列有多少种选法 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 */ /***************** ...

  2. Codeforces Round #Pi (Div. 2) C. Geometric Progression map

    C. Geometric Progression Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  3. 构造 Codeforces Round #Pi (Div. 2) B. Berland National Library

    题目传送门 /* 题意:给出一系列读者出行的记录,+表示一个读者进入,-表示一个读者离开,可能之前已经有读者在图书馆 构造:now记录当前图书馆人数,sz记录最小的容量,in数组标记进去的读者,分情况 ...

  4. Codeforces Round #Pi (Div. 2)(A,B,C,D)

    A题: 题目地址:Lineland Mail #include <stdio.h> #include <math.h> #include <string.h> #i ...

  5. codeforces Round #Pi (div.2) 567ABCD

    567A Lineland Mail题意:一些城市在一个x轴上,他们之间非常喜欢写信交流.送信的费用就是两个城市之间的距离,问每个城市写一封信给其它城市所花费的最小费用和最大的费用. 没什么好说的.直 ...

  6. Codeforces Round #Pi (Div. 2) ABCDEF已更新

    A. Lineland Mail time limit per test 3 seconds memory limit per test 256 megabytes input standard in ...

  7. Codeforces Round #Pi (Div. 2) —— C-Geometric Progression

    题意: 如今有n个数,然后给出一个数k(代表的是等比数列中的那个公比),然后第二行给出n个数,代表的是这个序列. 最后的问题是叫你找出在这个序列中满足公比为k的三个数有几种.并输出方案总数. 思路: ...

  8. Codeforces Round #392 (Div. 2) F. Geometrical Progression

    原题地址:http://codeforces.com/contest/758/problem/F F. Geometrical Progression time limit per test 4 se ...

  9. Codeforces Round #Pi (Div. 2) D. One-Dimensional Battle Ships set乱搞

    D. One-Dimensional Battle ShipsTime Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/con ...

随机推荐

  1. 转载:lua和c的交互

    extern "C" { #include "lua.h" #include "lualib.h" #include "lauxl ...

  2. Spring JdbcTemplate 查询方法中的RowMapper实现汇总

    实现一.在内部建立内联类实现RowMapper接口 package hysteria.contact.dao.impl; import java.sql.ResultSet; import java. ...

  3. 软件包管理器(bzoj 4196)

    Description Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖( ...

  4. Mysql常见配置说明

    [mysqld]配置 default-storage-engine = MyISAM 默认选择某种表存储引擎 ignore-bulidin-innodb 忽略mysql自带的innodb引擎,使用这个 ...

  5. Ubuntu Jdk卸载 Oracle Jdk安装

    完全卸载 移除所有 Java相关包 (Sun, Oracle, OpenJDK, IcedTea plugins, GIJ): apt-get update apt-cache search java ...

  6. 隐藏video标签的下载按钮

    问题: 使用video标签时,有些浏览器会显示视频的下载按钮,而这并不是我们需要的功能,必须想办法去掉. 解决方法: 使用下面的css可以达到隐藏下载按钮的效果,但是点击下载的位置,还是能出现开始下载 ...

  7. POJ 2125 最小点权覆盖集(输出方案)

    题意:给一个图(有自回路,重边),要去掉所有边,规则:对某个点,可以有2种操作:去掉进入该点 的所有边,也可以去掉出该点所有边,(第一种代价为w+,第二种代价为w-).求最小代价去除所有边. 己思:点 ...

  8. JFinal Weixin 1.6发布【转】

    原文:http://www.oschina.net/news/69495/jfinal-weixin-1-6-released#rd 继JFinal 2.1发布之后,再来一发JFinal Weixin ...

  9. 实验三:分别用for,while和do-while循环语句以及递归方法计算n!,并输出算式

    1.for循环语句计算n! 2.while循环语句计算n! 3.do-while语句计算n! 4.递归方法计算n! 5.心得:在此次实验中不知道如何从键盘进行输入,通过百度后找到一种容易理解的输入方法 ...

  10. Java中Arrays类与Math类

    Arrays(数组工具类) Java中已经封装好的类,提供大量静态方法供用户对数组的使用. 导包:import java.util.Arrays 1.Arrays.toString(数组) //返回值 ...