题目链接:https://vjudge.net/problem/POJ-3281

Dining
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 20017   Accepted: 8901

Description

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: NF, and D 
Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

Hint

One way to satisfy three cows is: 
Cow 1: no meal 
Cow 2: Food #2, Drink #2 
Cow 3: Food #1, Drink #1 
Cow 4: Food #3, Drink #3 
The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

Source

题意:

有N头牛, F个食物, D个饮料。每头牛只吃或者喝自己喜欢的食物或饮料,问:怎样分配,使得尽量多的牛能够获得一个食物或一个饮料?

题解:

题目要求就是要食物、饮料与牛进行匹配,但是又不能用匹配算法,因为有两种匹配。因而可以利用网络流:食物放左边,牛放中间,饮料放右边,然后最左边加个超级源点,最右边加个超级汇点。意思就是要:先将食物与牛进行匹配,然后再用匹配后的牛与饮料进行匹配。

1.超级源点与食物相连,且边的容量为1,表明每种食物只提供一份。

2.将每头牛拆成两点,左边与食物相连,边的容量为1,表明最多只能提供一份食物。右边与饮料相连,边的容量为1,表明最多只能提供一份饮料。然后内部相连,边的容量为1, 表明有“1头牛”。

3.每个饮料与超级汇点相连,且边的容量为1,表明每种饮料只提供一份。

4.建图完毕,求最大流即可。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 5e2+; int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int flow[MAXN][MAXN]; int sap(int start, int end, int nodenum)
{
memset(cur, , sizeof(cur));
memset(dis, , sizeof(dis));
memset(gap, , sizeof(gap));
memset(flow, , sizeof(flow));
int u = pre[start] = start, maxflow = , aug = INF;
gap[] = nodenum; while(dis[start]<nodenum)
{
loop:
for(int v = cur[u]; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && dis[u] == dis[v]+)
{
aug = min(aug, maze[u][v]-flow[u][v]);
pre[v] = u;
u = cur[u] = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u, u = pre[u])
{
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = INF;
}
goto loop;
} int mindis = nodenum-;
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && mindis>dis[v])
{
cur[u] = v;
mindis = dis[v];
}
if((--gap[dis[u]])==) break;
gap[dis[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} int main()
{
int N, F, D;
while(scanf("%d%d%d",&N,&F,&D)!=EOF)
{
memset(maze, , sizeof(maze));
for(int i = ; i<N; i++)
{
int f, d, v;
scanf("%d%d", &f,&d);
while(f--)
{
scanf("%d", &v);
v--;
maze[v][F+D+i] = ; //food --> cow
}
while(d--)
{
scanf("%d", &v);
v--;
maze[F+D+N+i][F+v] = ; //cow' --> drink
}
maze[F+D+i][F+D+N+i] = ; // cow --> cow'
} int start = F+D+*N, end = F+D+*N+;
for(int i = ; i<F; i++) maze[start][i] = ; //超级源点 --> food
for(int i = F; i<F+D; i++) maze[i][end] = ; //drink --> 超级汇点 int ans = sap(start, end, F+D+*N+);
printf("%d\n", ans);
}
}

没有cur优化的sap:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 5e2+; int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN];
int flow[MAXN][MAXN]; int sap(int start, int end, int nodenum)
{
memset(dis, , sizeof(dis));
memset(gap, , sizeof(gap));
memset(flow, , sizeof(flow));
int u = pre[start] = start, maxflow = , aug = INF;
gap[] = nodenum; while(dis[start]<nodenum)
{
loop:
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && dis[u] == dis[v]+)
{
aug = min(aug, maze[u][v]-flow[u][v]);
pre[v] = u;
u = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u, u = pre[u])
{
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = INF;
}
goto loop;
} int mindis = nodenum-;
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]>)
mindis = min(mindis, dis[v]); if((--gap[dis[u]])==) break;
gap[dis[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} int main()
{
int N, F, D;
while(scanf("%d%d%d",&N,&F,&D)!=EOF)
{
memset(maze, , sizeof(maze));
for(int i = ; i<N; i++)
{
int f, d, v;
scanf("%d%d", &f,&d);
while(f--)
{
scanf("%d", &v);
v--;
maze[v][F+D+i] = ; //food --> cow
}
while(d--)
{
scanf("%d", &v);
v--;
maze[F+D+N+i][F+v] = ; //cow' --> drink
}
maze[F+D+i][F+D+N+i] = ; // cow --> cow'
} int start = F+D+*N, end = F+D+*N+;
for(int i = ; i<F; i++) maze[start][i] = ; //超级源点 --> food
for(int i = F; i<F+D; i++) maze[i][end] = ; //drink --> 超级汇点 int ans = sap(start, end, F+D+*N+);
printf("%d\n", ans);
}
}

没有cur和gap优化的sap:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 5e2+; int maze[MAXN][MAXN];
int dis[MAXN], pre[MAXN];
int flow[MAXN][MAXN]; int sap(int start, int end, int nodenum)
{
memset(dis, , sizeof(dis));
memset(flow, , sizeof(flow));
int u = pre[start] = start, maxflow = , aug = INF; while(dis[start]<nodenum)
{
loop:
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && dis[u] == dis[v]+)
{
aug = min(aug, maze[u][v]-flow[u][v]);
pre[v] = u;
u = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u, u = pre[u])
{
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = INF;
}
goto loop;
} int mindis = nodenum-;
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]>)
mindis = min(mindis, dis[v]); dis[u]=mindis+;
u = pre[u];
}
return maxflow;
} int main()
{
int N, F, D;
while(scanf("%d%d%d",&N,&F,&D)!=EOF)
{
memset(maze, , sizeof(maze));
for(int i = ; i<N; i++)
{
int f, d, v;
scanf("%d%d", &f,&d);
while(f--)
{
scanf("%d", &v);
v--;
maze[v][F+D+i] = ; //food --> cow
}
while(d--)
{
scanf("%d", &v);
v--;
maze[F+D+N+i][F+v] = ; //cow' --> drink
}
maze[F+D+i][F+D+N+i] = ; // cow --> cow'
} int start = F+D+*N, end = F+D+*N+;
for(int i = ; i<F; i++) maze[start][i] = ; //超级源点 --> food
for(int i = F; i<F+D; i++) maze[i][end] = ; //drink --> 超级汇点 int ans = sap(start, end, F+D+*N+);
printf("%d\n", ans);
}
}

POJ3281 Dining —— 最大流 + 拆点的更多相关文章

  1. [poj3281]Dining(最大流+拆点)

    题目大意:有$n$头牛,$f$种食物和$d$种饮料,每种食物或饮料只能供一头牛享用,且每头牛只享用一种食物和一种饮料.每头牛都有自己喜欢的食物种类列表和饮料种类列表,问最多能使几头牛同时享用到自己喜欢 ...

  2. POJ3281 Dining 最大流

    题意:有f种菜,d种饮品,每个牛有喜欢的一些菜和饮品,每种菜只能被选一次,饮品一样,问最多能使多少头牛享受自己喜欢的饮品和菜 分析:建边的时候,把牛拆成两个点,出和入 1,源点向每种菜流量为1 2,每 ...

  3. poj3281 Dining 最大流(奇妙的构图)

    我是按照图论500题的文档来刷题的,看了这题怎么也不觉得这是最大流的题目.这应该是题目做得太少的缘故. 什么是最大流问题?最大流有什么特点? 最大流的特点我觉得有一下几点: 1.只有一个起点.一个终点 ...

  4. POJ 3281 Dining(最大流+拆点)

    题目链接:http://poj.org/problem?id=3281 题目大意:农夫为他的 N (1 ≤ N ≤ 100) 牛准备了 F (1 ≤ F ≤ 100)种食物和 D (1 ≤ D ≤ 1 ...

  5. POJ3281:Dining(dinic+拆点)

    题目链接:http://poj.org/problem?id=3281 PS:刷够网络流了,先这样吧,之后再刷,慢慢补. 题意:有F种食物,D种饮料,N头奶牛,只能吃某种食物和饮料(而且只能吃特定的一 ...

  6. POJ3281 Dining(拆点构图 + 最大流)

    题目链接 题意:有F种食物,D种饮料N头奶牛,只能吃某种食物和饮料(而且只能吃特定的一份) 一种食物被一头牛吃了之后,其余牛就不能吃了第一行有N,F,D三个整数接着2-N+1行代表第i头牛,前面两个整 ...

  7. <每日一题>Day 9:POJ-3281.Dining(拆点 + 多源多汇+ 网络流 )

    Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 24945   Accepted: 10985 Descript ...

  8. poj 3498 March of the Penguins(最大流+拆点)

    题目大意:在南极生活着一些企鹅,这些企鹅站在一些冰块上,现在要让这些企鹅都跳到同一个冰块上.但是企鹅有最大的跳跃距离,每只企鹅从冰块上跳走时会给冰块造成损害,因此企鹅跳离每个冰块都有次数限制.找出企鹅 ...

  9. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

随机推荐

  1. solr学习0

    solr中文网,solr教程1,solr教程2,solr教程3 solr界面使用:文章1 windows安装solr:文章1,文章2 solr集群:文章1

  2. hdu 5012 bfs 康托展开

    Dice Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  3. Laravel 控制器的session

    设置路由 //使用session,需要开启session,//session的开始类在/app/Kernel下//protected $middlewareGroups = [// 'web' =&g ...

  4. Java中String字符串toString()、String.valueOf()、String强转、+ ""的区别

    Object#toString(): Object object = getObject(); System.out.println(object.toString()); 在这种使用方法中,因为ja ...

  5. 10.Java web—JavaBean

    定义一个类,然后在jsp页面通过<jsp:useBean>标签调用 重点是类属性名要起得规则,一般是setXXX  getXXXX 新建一个类UserInfo public class U ...

  6. 6.JAVA语言基础部分--数据库操作

    操作数据数据流程:得到Connecnt->获取Statement对象->执行sql语句返回ResultSet 1.通过DriverManager.getConnection("j ...

  7. JavaScript 函数作用域的“提升”现象

    在JavaScript当中,定义变量通过var操作符+变量名.但是不加 var 操作符,直接赋值也是可以的.例如 : message = "hello JavaScript ! " ...

  8. 【面试 springMVC】【第四篇】springMVC的一些问题

    1.springMVC的工作流程是什么样的 1.用户请求到达 2.DispatcherServlet接收请求,发送给处理器映射器 3.处理器映射器handlerMapping,处理找到对应处理器,返回 ...

  9. UVA 1482 - Playing With Stones(SG打表规律)

    UVA 1482 - Playing With Stones 题目链接 题意:给定n堆石头,每次选一堆取至少一个.不超过一半的石子,最后不能取的输,问是否先手必胜 思路:数值非常大.无法直接递推sg函 ...

  10. Java类载入器(二)——自己定义类载入器

      用户定制自己的ClassLoader能够实现以下的一些应用: 自己定义路径下查找自己定义的class类文件,或许我们须要的class文件并不总是在已经设置好的Classpath以下,那么我们必须想 ...