POJ1236【图的前连通(缩点)】
题意:
1.初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件。
2.至少需要添加几条传输线路(边),使任意向一个学校发放软件后,经过若干次传送,网络内所有的学校最终都能得到软件。
思路:
我们先把图中的强连通分量缩点
经过缩点后,就可以把强连通分量看成一个个独立的点,这张图可以模拟一下,有离散的点,有一些连起来的点,咳咳,但绝对不是连通的!
题目的问题1那不就是在新图上搞一搞出度==0的点的数量
题目的问题2要我们在这张新图上搞一个强连通图,我们可以根据强连通的性质,也就是每个点都要有被指向边和出去的边,那么也就是求一下每个点(强连通分量)的入度和出度,把出度==0的点个数加起来,把入度==0的点个数加起来,比一比谁大,输出谁,因为我们可以直接在入度为0和出度为0的两点间加边,所以取大的那个就满足。
这种题都一个套路。有点水的没意思了。如果没有搞过这种题,可以看我前面两篇blog…当然写的很水,主要可以我是想说可以做做那两题….
#include<iostream>
#include<cstdio>
#include<math.h>
#include<stdlib.h>
#include<vector>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 110
int ma[N][N];
int dfn[N];
int low[N];
int stap[N];
int vis[N];
int in[N];
int tp,p,cnt;
int kc[N];
int kr[N];
int n;
void tarjan(int u)
{
dfn[u]=low[u]=++tp;
stap[++p]=u;
vis[u]=1;
for(int i=1;i<=n;i++)
{
if(!ma[u][i])
continue;
if(!dfn[i])
{
tarjan(i);
low[u]=min(low[u],low[i]);
}
else if(vis[i])
{
low[u]=min(low[u],dfn[i]);
}
}
if(dfn[u]==low[u])
{
cnt++;
int temp;
while(1)
{
temp=stap[p];
vis[temp]=0;
in[temp]=cnt;
p--;
if(temp==u)
{
break;
}
}
}
}
void fun()
{
int pc,pr;
memset(kc,0,sizeof(kc));
memset(kr,0,sizeof(kr));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(ma[i][j]&&in[i]!=in[j])
{
kr[in[j]]++;
kc[in[i]]++;
}
}
}
pc=pr=0;
for(int i=1;i<=cnt;i++)
{
if(!kr[i])
{
pr++;
}
if(!kc[i])
{
pc++;
}
}
if(cnt==1)
{
printf("1\n0\n");
}
else
printf("%d\n%d\n",pr,max(pr,pc));
}
void init()
{
memset(ma,0,sizeof(ma));
memset(vis,0,sizeof(vis));
memset(dfn,0,sizeof(dfn));
}
int main()
{
while(~scanf("%d",&n))
{
int x;
init();
for(int i=1;i<=n;i++)
{
while(scanf("%d",&x)&&x)
ma[i][x]=1;
}
//找强连通分量
tp=p=cnt=0;
for(int i=1;i<=n;i++)
{
if(!dfn[i])
{
tarjan(i);
}
}
fun();
}
return 0;
}
/*
5
2 4 3 0
4 5 0
0
0
1 0
*/
POJ1236【图的前连通(缩点)】的更多相关文章
- Semiconnected--强连通缩点
1451: Semiconnected 时间限制: 1 Sec 内存限制: 32 MB 提交: 79 解决: 20 题目描述 For a directed graph G = (V, E), if ...
- hdu 4612 Warm up 双连通缩点+树的直径
首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...
- 使用OpenCV查找二值图中最大连通区域
http://blog.csdn.net/shaoxiaohu1/article/details/40272875 使用OpenCV查找二值图中最大连通区域 标签: OpenCVfindCoutour ...
- 边双连通缩点+树dp 2015 ACM Arabella Collegiate Programming Contest的Gym - 100676H
http://codeforces.com/gym/100676/attachments 题目大意: 有n个城市,有m条路,每条路都有边长,如果某几个城市的路能组成一个环,那么在环中的这些城市就有传送 ...
- loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点
loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...
- poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】
Road Construction Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10141 Accepted: 503 ...
- Hdu4005-The war(双连通缩点)
In the war, the intelligence about the enemy is very important. Now, our troop has mastered the situ ...
- POJ 3177 Redundant Paths (边双连通+缩点)
<题目链接> <转载于 >>> > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...
- UVA 10972 RevolC FaeLoN(边-双连通+缩点)
很好的一道图论题,整整撸了一上午... 题意是给定一个无向图,要求将所有边变为有向边,求最少加入多少条有向边,使得该图强连通?这里先假设一个问题:给定一个无向子图,该子图具有怎样的性质才能使得将其无向 ...
随机推荐
- vim note (1)
'vim' go into the vim mode 'i' 'a' 's' is means insert mode 'v' is means visual mode 'esc' is mea ...
- 利用ctypes调用Fortran程序
本来python下面调用fortran最傻瓜方便的办法就是f2py,但是若fortran和C混合编程的代码,分别指定gfortran和gcc为编译器,在windows下面f2py直接报错 那么ctyp ...
- Vs2012在Linux开发中的应用(6):改写Makefile项目的Build过程
MSBUILD的编译过程实际上是依据一系列的targets文件定义的.当我们在IDE运行生成.批生成.清理命令的时候.VS会查找这些命令相应的Task并运行它,以下我们逐个分析这个过程. 当运行生成操 ...
- Django 之 form表单
Django中的Form表单 1.背景 平时我们在书写form表单时,经常都是手动的去写一些input标签,让用户输入一些功能,进行一些校验的判断,等等.Django中的form表单就能够帮我们去实现 ...
- MD5加密实现类不是Windows平台下联邦信息处理标准验证过的加密算法的一部分
在.NET应用程序中,MD5CryptoServiceProvider实例化时,造成This implementation is not part of the Windows Platform FI ...
- Spring中的AOP(学习笔记)
是什么AOP及实现方式 AOP的基本概念 Schema-base AOP Spring AOP API AspectJ
- PPAPI与Browser间使用AsyncIPC通信
採用AsyncIpc这个项目(https://github.com/hicdre/AsyncIpc).来完毕PPAPI Plugin进程与Browser进程的通信. foruok原创.如需转载请关注f ...
- Linux epoll 源码注释
https://www.cnblogs.com/stonehat/p/8613505.html 这篇文章值得好好读,先留个记录,回头看. IO多路复用之epoll总结 - Anker's Blog - ...
- Qt & opencv 学习(一)
Qt也没怎么系统学过,opencv也没系统学过.慢慢来,一步一步弄清楚吧. 天嵌科技有个文档,先去看这个文档,主要是开发环境的配置.文档名字就是QT应用程序开发手册-20150918.pdf.在QT里 ...
- golang-----golang sync.WaitGroup解决goroutine同步
go提供了sync包和channel来解决协程同步和通讯.新手对channel通道操作起来更容易产生死锁,如果时缓冲的channel还要考虑channel放入和取出数据的速率问题. 从字面就可以理解, ...