【题解】

  跟51nod 1105差不多。

  二分答案求出第L个数和第R个数,check的时候再套一个二分或者用two pointers.

  最后枚举ai在b里面二分,找到所有范围内的数,排序后输出。

  注意最后找到的数可能多于R-L+1,需要考虑这一点。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define LL long long
#define rg register
#define N 100010
using namespace std;
LL tot,n,l,r,st,ed,mn,mx,a[N],b[N],ans[N];
inline LL read(){
LL k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
inline LL check(LL x){
LL sum=;
for(rg int i=;i<=n;i++){
LL tmp=x-a[i]+;
sum+=lower_bound(b+,b++n,tmp)-b-;
// printf("sum=%d\n",sum);
}
// printf("sum=%d\n",sum);
return sum;
}
int main(){
n=read(); st=read(); ed=read();
for(rg int i=;i<=n;i++) a[i]=read(); sort(a+,a++n);
for(rg int i=;i<=n;i++) b[i]=read(); sort(b+,b++n);
l=a[]+b[]-; r=a[n]+b[n];
while(l+<r){
LL mid=(l+r)>>;
if(check(mid)>=st) r=mid; else l=mid;
}
mn=r;
l=a[]+b[]-; r=a[n]+b[n];
while(l+<r){
LL mid=(l+r)>>;
if(check(mid)>=ed) r=mid; else l=mid;
}
mx=r;
// printf("%d %d\n",mn,mx);
for(rg int i=;i<=n;i++){
int tmp=mn-a[i],tmp2=mx-a[i];
int pos1=lower_bound(b+,b++n,tmp)-b;
if(pos1==n+) continue;
int pos2=upper_bound(b+,b++n,tmp2)-b;
// printf("%d %d\n",pos1,pos2);
for(rg int j=pos1;j<pos2;j++) ans[++tot]=a[i]+b[j];
}
sort(ans+,ans++tot);
tot=min(tot,ed-st+);
for(rg int i=;i<=tot;i++) printf("%lld ",ans[i]);
return ;
}

noi.ac NOIP2018 全国热身赛 第四场 T2 sort的更多相关文章

  1. NOI.AC NOIP2018 全国热身赛 第四场

    心路历程 预计得分:\(0 + 100 +100\) 实际得分:\(10 + 100 + 0\) 神TM T3模数为啥是\(1e9 + 9\)啊啊啊啊,而且我也确实是眼瞎...真是血的教训啊.. T2 ...

  2. noi.ac NOIP2018 全国热身赛 第四场 T1 tree

    [题解] 考虑从小到大枚举边权,按顺序加边. 当前树被分成了若干个联通块,若各个块内的点只能跟块外的点匹配,那么最终的min g(i,pi)一定大于等于当前枚举的边. 判断各个联通块内的点是否全部能跟 ...

  3. noi.ac NOIP2018 全国热身赛 第二场 T3 color

    [题解] 我们可以发现每次修改之后叶子结点到根的路径最多分为两段:一段白色或者黑色,上面接另一段灰色的.二分+倍增找到分界点,然后更新答案即可. check的时候只需要判断当前节点对应的叶子结点的区间 ...

  4. noi.ac NOIP2018 全国热身赛 第二场 T1 ball

    [题解] 可以发现每次推的操作就是把序列中每个数变为下一个数,再打一个减一标记:而每次加球的操作就是把球的位置加上标记,再插入到合适的位置. 用set维护即可. #include<cstdio& ...

  5. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  6. NOI.AC: NOIP2018 全国模拟赛习题练习

    闲谈: 最后一个星期还是不浪了,做一下模拟赛(还是有点小虚) #30.candy 题目: 有一个人想买糖吃,有两家商店A,B,A商店中第i个糖果的愉悦度为Ai,B商店中第i个糖果的愉悦度为Bi 给出n ...

  7. NOIP2018 全国热身赛 第二场 (不开放)

    NOIP2018 全国热身赛 第二场 (不开放) 题目链接:http://noi.ac/contest/26/problem/60 一道蛮有趣的题目. 然后比赛傻逼了. 即将做出来的时候去做别的题了. ...

  8. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  9. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

随机推荐

  1. tarjan有向图的强连通

    强连通:在有向图G中,两个顶点间至少存在一条路径,则两个点强连通. 强连通图:在有向图中,每两个顶点都强连通,则有向图G就是一个强连通图. 强连通分量:在非强连通图中的极大强连通子图,就称为强连通分量 ...

  2. iOS 加载Viewcontroller的几种方法

    // 一.根据StoryboardID(需要在Storyboard设置),通过ViewController所在的Storyboard来加载: UIStoryboard *storyboard = [U ...

  3. 树状数组 POJ 2481 Cows

    题目传送门 #include <cstdio> #include <cstring> #include <algorithm> using namespace st ...

  4. 18.5.2动态代理和AOP

    ----此处是JDK动态代理----package d18_5_2; public interface IDog { void info(); void run(); } package d18_5_ ...

  5. RAID基础

    磁盘类型 类型 IDE Integrated Drive Electronics SATA Srial ATA SCSI Small Computer System Interface FC Fibe ...

  6. RHEL7.2安装及配置实验环境

    截图太多了,就不一一上传了,请查看这个分享网址 http://pan.baidu.com/s/1kVeYANH 什么时候博客更新下能直接把图一下复制进来多好!省事.

  7. Vue nextTick 理解

    官网解释: 将回调延迟到下次 DOM 更新循环之后执行.在修改数据之后立即使用它,然后等待 DOM 更新.它跟全局方法 Vue.nextTick 一样,不同的是回调的 this 自动绑定到调用它的实例 ...

  8. Win2D 入门教程 VB 中文版

    继续填坑!又一个c#教程变为vb! 这是我翻译的Win2D教程,链接保留了微软原版的. 如果文档有问题,可以在 https://github.com/Nukepayload2/Win2dDocVB发 ...

  9. 工作笔记:复制文件--从windows到ubuntu,再到fedora

    最近在测试跨平台类库,于是写了一些小程序. 当然主要利用vs进行主要的代码开发.eclipse进行linux的调试. 那么需要不时同步项目文件. 考虑到项目简单,所以没有使用svn. 1. 从wind ...

  10. PHP环境搭建Zend Studio 10.6.2+WampServer2.4

    址:http://www.zend.com/en/products/studio/downloads直接下载地址:http://downloads.zend.com/studio-eclipse/10 ...