【洛谷2257/BZOJ2820】YY的GCD(数论/莫比乌斯函数)
题目:
预备知识:莫比乌斯定理(懵逼乌斯定理)
\(\mu*1=\epsilon\)(证bu明hui略zheng)
其中(我校学长把\(\epsilon(x)\)叫单位函数但是为什么我没百度到qwq)
0 & x\neq1\\
\end{cases}\]
0 & 存在质数p使p^2|x\\
(-1)^k & k是x质因数的个数 \end{cases}\]
那个\(*\)是迪利克雷卷积,换成人话就是
\]
我觉得用这种方式理解莫比乌斯定理比设两个函数容易
分析:
这题莫比乌斯定理的经典用例。
本文中默认\(N>M\)
默认\(p\)是质数
显然如果\(gcd(i,j)=p\),那么\(gcd(\frac{i}{p}, \frac{j}{p})=1\)
那么题目所求可以转换成下面的式子
\]
其中(我校学长把这个叫单位函数但是我没百度到qwq)
0 & x\neq1\\
\end{cases}\]
根据莫比乌斯反演定理,上面的式子就可以变成
\]
改变一下枚举顺序,用\(d·i\)表示原来的\(i\),\(d·j\)表示原来的\(j\),得到
\]
可以发现\(\mu(d)\)和\(i\)、\(j\)没半毛钱关系,仅仅是乘上\(i\)和\(j\)可以取的值的数量
也就是
\]
令\(T=pd\),枚举T,上式可变成
\]
设$$g(x)=\sum_{p|x}\mu(\frac{x}{p})$$
则上式就是
\]
现在考虑如何求\(g(x)\)这个函数。
首先,对于任意质数\(p\),显然\(g(p)=\mu(1)=1\)
然后,对于任意合数\(n=kp_0\)(\(p_0\)是质数)\(g(n)\)中显然存在\(\mu(\frac{n}{p_0})\)也就是\(\mu(k)\)这一项
当\({p_0}|k\),也就是\(p_0^2|n\),对于任意\(p|k\)且\(p\neq p_0\),\(\mu(\frac{n}{p})\)中一定有\(p_0^2\)这个质数平方因子。根据\(\mu(x)\)的定义,\(\mu(\frac{n}{p})=0\)
所以此时\(g(n)=\mu(k)\)
当\(p_0\)不能整除\(k\),对于任意\(p|k\),\(\mu(\frac{n}{p})\)比\(\mu(\frac{k}{p})\)多了\(p_0\)这个质因子。根据\(\mu(x)\)的定义\(\mu(\frac{n}{p})=-\mu(\frac{k}{p})\)
所以此时\(g(n)=-g(k)+\mu(k)\)
总结一下
\mu(k) & x=kp且p能整除k\\
-g(k)+\mu(k) & x=kp且p不能整除k
\end{cases}\]
显然这个函数可以用线性筛求
\]
再来看这个式子,既然\(g(T)\)可以直接预处理并\(O(1)\)查询,那么计算这个式子的时间复杂度就是枚举\(T\)的复杂度\(O(N)\)
我会做啦!
别急,这题还有\(T\)组询问,所以复杂度是O(不可过)\(O(NT)\),这个过不了。
但是我们可以发现\(\lfloor\frac{N}{T}\rfloor*\lfloor\frac{M}{T}\rfloor\)在\(T\)的一段区间内是不变的,所以可以给\(g(T)\)算个前缀和然后分段计算,据说复杂度是\(O(\sqrt N T)\)的(我不会证),这样就可以过了
代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
namespace zyt
{
typedef long long ll;
const int N = 1e7 + 10, M = 7e5;
bool mark[N];
int cnt, prime[M], phi[N], mu[N];
ll g[N];
void init()
{
mu[1] = 1;
for (int i = 2; i < N; i++)
{
if (!mark[i])
prime[cnt++] = i, mu[i] = -1, g[i] = 1;
for (int j = 0; j < cnt && (ll)i * prime[j] < N; j++)
{
int k = i * prime[j];
mark[k] = true;
if (i % prime[j] == 0)
{
mu[k] = 0;
g[k] = mu[i];
break;
}
else
{
mu[k] = -mu[i];
g[k] = -g[i] + mu[i];
}
}
}
for (int i = 2; i < N; i++)
g[i] += g[i - 1];
}
void work()
{
int T;
init();
scanf("%d", &T);
while (T--)
{
int n, m, pos = cnt;
ll ans = 0;
scanf("%d%d", &n, &m);
if (n > m)
swap(n, m);
for (int t = 1; t <= n;)
{
int tmp = min(n / (n / t), m / (m / t));
ans += (g[tmp] - g[t - 1]) * (n / t) * (m / t);
t = tmp + 1;
}
printf("%lld\n", ans);
}
}
}
int main()
{
zyt::work();
return 0;
}
【洛谷2257/BZOJ2820】YY的GCD(数论/莫比乌斯函数)的更多相关文章
- 【洛谷2257】YY的GCD(莫比乌斯反演)
点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^MIsPrime(gcd(x,y))\). 莫比乌斯反演 听说此题是莫比乌斯反演入门题? 一些定义 首先,我们可以定义\(f ...
- BZOJ2820 YY的GCD 【莫比乌斯反演】
BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...
- LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...
- 洛谷 P2257 【YY的GCD】
这道题还是和上一道[ZAP]有那么一点点的相似哈 题目大意 给定N, M,求1<=x<=N, 1<=y<=M且\(gcd(x, y)\)为质数的(x, y)有多少对 如果对莫比 ...
- 【洛谷P2257】YY的GCD
题目大意:有 \(T\) 个询问,每个询问给定 \(N, M\),求 \(1\le x\le N, 1\le y\le M\) 且 \(gcd(x, y)\) 为质数的 \((x, y)\) 有多少对 ...
- BZOJ 2820 YY的GCD(莫比乌斯函数)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
随机推荐
- redis+php+mysql处理高并发实例
一.实验环境ubuntu.php.apache或nginx.mysql二.利用Redis锁解决高并发问题,需求现在有一个接口可能会出现并发量比较大的情况,这个接口使用php写的,做的功能是接收 用户的 ...
- 版本优化-test
版本优化 标签(空格分隔): 测试 需求经手人太多,直接提bug,开发不乐意,跟Leader确认不靠谱,跟PM确认,不熟悉流程,跟第三方PM确认靠谱了,结果被开发三言两语,变成了不改bug 而改需求 ...
- python 配置文件 ConfigParser模块
ConfigParser模块 用于生成和修改常见配置文档,当前模块的名称在 python 3.x 版本中变更为 configparser. 来看一个好多软件的常见文档格式如下 [DEFAULT] Se ...
- Python学习——集合
集合 python中的集合和数学上集合具有基本相同的性质,此处不再赘述. 1.创建集合的两种方法 #直接创建 num={1,2,3,4,5} #利用set方法创建 num1=set([1,2,3,4, ...
- 【Codeforces 494A】Treasure
[链接] 我是链接,点我呀:) [题意] 让你把"#"用至少一个右括号代替 使得整个括号序列合法 [题解] 首先我们不要考虑井号 考虑最简单的括号序列 并且把左括号看成1,右括号看 ...
- CodeForces - 459C - Pashmak and Buses
先上题目+: C. Pashmak and Buses time limit per test 1 second memory limit per test 256 megabytes input s ...
- Self Centos + Windows server 2016
Set up by Derek: 2019-1-25 登陆个人物理机: license 60天Free , 如果过期,就在 VMware ESXI 6.5.0的黑屏界面去reset. https:/ ...
- URAL 2031. Overturned Numbers (枚举)
2031. Overturned Numbers Time limit: 1.0 second Memory limit: 64 MB Little Pierre was surfing the In ...
- Android实现一个自己定义相机的界面
我们先实现拍照button的圆形效果哈.Android开发中,当然能够找美工人员设计图片,然后直接拿进来.只是我们能够自己写代码实现这个效果哈.最经常使用的的是用layout-list实现图片的叠加, ...
- LeetCode 645. Set Mismatch (集合不匹配)
The set S originally contains numbers from 1 to n. But unfortunately, due to the data error, one of ...