http://www.win-vector.com/dfiles/LogisticRegressionMaxEnt.pdf

https://www.zhihu.com/question/24094554

$\pi(x(i))_v$ 表示模型输出的样本$x_i$属于类别$v$的概率

对于多类分类:

  表示将样本$x$预测为类$v$的概率

求导:

训练集的似然函数:

对数似然函数:

极大似然估计,对$\lambda_{u,j}$求导:

令偏导数为0,得:

记:

---------------- >

 由左式可以求出$\lambda_{u, j}$


由最大熵模型推导LR: LR直接使用了sigmoid函数,最大熵由任意预测函数出发,可推出LR使用sigmoid函数

求解预测函数$\pi(x)$, 可能是任意形式的函数,需满足以下三个条件:

The first two conditions are needed for $\pi ()$ to behave like a probability and the third we can think of as saying $\pi(x_i)_u$ should well approximate the category indicator     $A(u, y(i))$ on our training data.

特征函数个数应该等于类别数目,特征函数相当于对输入x(对应y(i))和输出y(对应u)同时抽取特征

由最大熵理论,求解满足以上三个条件的熵最大的模型(有约束的最优化问题)。

熵的定义:

拉格朗日函数:

 此处是不是少了一个约束条件?

It might seem that guessing the sigmoid form is less trouble than appealing to maximum entropy. However the sigmoid is special trick (either it is appropriate or it is not) and the maximum entropy principle (and also taking partial derivatives of the Lagrangian) is a general technique.

http://blog.csdn.net/buring_/article/details/43342341

最大熵推导LR的更多相关文章

  1. Maximum Entropy Model(最大熵模型)初理解

    0,熵的描述 熵(entropy)指的是体系的混沌的程度(可也理解为一个随机变量的不确定性),它在控制论.概率论.数论.天体物理.生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义, ...

  2. LR问题集合

    LR如何解决低维不可分 特征映射:通过特征变换的方式把低维空间转换到高维空间,而在低维空间不可分的数据,到高维空间中线性可分的几率会高一些.具体方法:核函数,如:高斯核,多项式核等等. 从图模型角度看 ...

  3. RBM

    1. 玻尔兹曼分布: $$p(E) \thicksim e^{-E/kT} $$ 2. RBM 两层:隐层和可视层, $\mathbf v$, $\mathbf h$ $$v_i \in \{0, 1 ...

  4. 【机器学习基础】逻辑回归——LogisticRegression

    LR算法作为一种比较经典的分类算法,在实际应用和面试中经常受到青睐,虽然在理论方面不是特别复杂,但LR所牵涉的知识点还是比较多的,同时与概率生成模型.神经网络都有着一定的联系,本节就针对这一算法及其所 ...

  5. LR采用的Sigmoid函数与最大熵(ME) 的关系

    LR采用的Sigmoid函数与最大熵(ME) 的关系 从ME到LR 先直接给出最大熵模型的一般形式,后面再给出具体的推导过程. \[\begin{align*} P_w(y|x) &= \df ...

  6. 机器学习-LR推导及与SVM的区别

    之前整理过一篇关于逻辑回归的帖子,但是只是简单介绍了一下了LR的基本思想,面试的时候基本用不上,那么这篇帖子就深入理解一下LR的一些知识,希望能够对面试有一定的帮助. 1.逻辑斯谛分布 介绍逻辑斯谛回 ...

  7. LR的深入理解资料汇集

    今天面试被问到LR的算法的梯度和正则化项,自己不太理解,所以找了一些相关资料,发现LR的算法在梯度下降,正则化和sigmoid函数方面都有很深的研究,期间也发现一些比较好的资料,记录一下. 这篇论文推 ...

  8. LL LR SLR LALR 傻傻分不清

    [转] 一:LR(0),SLR(1),规范LR(1),LALR(1)的关系     首先LL(1)分析法是自上而下的分析法.LR(0),LR(1),SLR(1),LALR(1)是自下而上的分析法.   ...

  9. 逻辑回归(LR)总结复习

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 最基本的LR分类器适合于对两分类(类0,类1)目标进行分类:这个模型以样 ...

随机推荐

  1. 目录扫描工具DirBuster

    DirBuster是用来探测web服务器上的目录和隐藏文件的.因为DirBuster是采用java编写的,所以运行前要安装上java的环境. 来看一下基本的使用: ①:TargetURL下输入要探测网 ...

  2. verilog behavioral modeling--branch statement

    conditional statement case statement 1. conditional statement     if(expression)         statement_o ...

  3. 【转】Hive over HBase和Hive over HDFS性能比较分析

    转载:http://lxw1234.com/archives/2015/04/101.htm 环境配置: hadoop-2.0.0-cdh4.3.0 (4 nodes, 24G mem/node) h ...

  4. Python模块--time&datetime

    一.Python中时间的表示方式 1.时间戳  如 1552623413.043036 2.格式化的时间字符串  如 2015-12-02 3.struct_time  是一个元组 共有九个元素 二. ...

  5. ssh执行远程服务器脚本 提示php: command not found

    ssh执行远程服务器脚本 提示php: command not found 设置环境变量 一台机器作为管理机,来管理其他服务器,并通过key认证,免密码登陆的. 在管理机上通过ssh登陆到其他服务器来 ...

  6. LINQ-查询表达式基础

    一.LINQ查询的数据源 从应用程序的角度来看,原始源数据的特定类型和结构并不重要. 应用程序始终将源数据视为 IEnumerable<T> 或 IQueryable<T> 集 ...

  7. 刷题总结——路径(ssoi)

    题目: 题目背景 CF 57D 题目描述 小美今天和她的好朋友在玩捉迷藏游戏.地图可以抽象成一张 n*m 的图,地图上有一些障碍.但这些障碍有一些性质:1:每个障碍周围 8 个格子是没有障碍的.2:每 ...

  8. 解决centos7中ens33中不显示IP等问题

    在虚拟机中安装centos7,输入ifconfig显示command not found.在sbin目录中发现没有ifconfig文件,这是因为centos7已经不使用 ifconfig命令了,已经用 ...

  9. centos 7如何配置网络、网卡、ip命令

    Linux网络相关配置文件 Linux网络配置相关的文件根据不同的发行版目录名称有所不同,但大同小异,主要有似下目录或文件. (1)/etc/hostname:主要功能在于修改主机名称. (2)/et ...

  10. Generation I

    Generation I Oak is given N empty and non-repeatable sets which are numbered from 1 to N. Now Oak is ...