【题目链接】

点击打开链接

【算法】

单调队列

【代码】

#include<bits/stdc++.h>
using namespace std;
#define MAXN 1010
const int INF = 2e9; int i,j,a,b,n,ans = INF;
deque<int> q1,q2;
int val[MAXN][MAXN],mx[MAXN][MAXN],mn[MAXN][MAXN]; template <typename T> inline void read(T &x)
{
int f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
template <typename T> inline void write(T x)
{
if (x < )
{
putchar('-');
x = -x;
}
if (x > ) write(x/);
putchar(x%+'');
}
template <typename T> inline void writeln(T x)
{
write(x);
puts("");
} int main() { read(a); read(b); read(n);
for (i = ; i <= a; i++)
{
for (j = ; j <= b; j++)
{
read(val[i][j]);
}
}
for (i = ; i <= b; i++)
{
q1.clear(); q2.clear();
for (j = ; j < n; j++)
{
while ((!q1.empty()) && (val[q1.back()][i] <= val[j][i])) q1.pop_back();
q1.push_back(j);
while ((!q2.empty()) && (val[q2.back()][i] >= val[j][i])) q2.pop_back();
q2.push_back(j);
}
for (j = n; j <= a; j++)
{
while ((!q1.empty()) && (j - q1.front() >= n)) q1.pop_front();
while ((!q2.empty()) && (j - q2.front() >= n)) q2.pop_front();
while ((!q1.empty()) && (val[q1.back()][i] <= val[j][i])) q1.pop_back();
q1.push_back(j);
while ((!q2.empty()) && (val[q2.back()][i] >= val[j][i])) q2.pop_back();
q2.push_back(j);
mx[j][i] = val[q1.front()][i];
mn[j][i] = val[q2.front()][i];
}
}
for (i = n; i <= a; i++)
{
q1.clear(); q2.clear();
for (j = ; j < n; j++)
{
while ((!q1.empty()) && (mx[i][q1.back()] <= mx[i][j])) q1.pop_back();
q1.push_back(j);
while ((!q2.empty()) && (mn[i][q2.back()] >= mn[i][j])) q2.pop_back();
q2.push_back(j);
}
for (j = n; j <= b; j++)
{
while ((!q1.empty()) && (j - q1.front() >= n)) q1.pop_front();
while ((!q2.empty()) && (j - q2.front() >= n)) q2.pop_front();
while ((!q1.empty()) && (mx[i][q1.back()] <= mx[i][j])) q1.pop_back();
q1.push_back(j);
while ((!q2.empty()) && (mn[i][q2.back()] >= mn[i][j])) q2.pop_back();
q2.push_back(j);
ans = min(ans,mx[i][q1.front()]-mn[i][q2.front()]);
}
}
writeln(ans); return ; }

【HAOI 2007】 理想的正方形的更多相关文章

  1. [HAOI 2007]理想的正方形

    Description 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. Input 第一行为3个整数,分别表示a,b,n的值第二行至第 ...

  2. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  3. 【bzoj1047】理想的正方形

    [bzoj1047]理想的正方形 题意 给定\(a*b\)由整数组成的矩形. 现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值 的差最小. \(1\leq a,b\leq 10 ...

  4. HAOI2007 理想的正方形

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1402  Solved: 738[Submit][Sta ...

  5. RAM——[HAOI2007]理想的正方形

    题目:[HAOI2007]理想的正方形 描述: [问题描述] 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. [输入]: 第一行为3个 ...

  6. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  7. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  8. 【BZOJ1047】[HAOI2007]理想的正方形(单调队列,动态规划)

    [BZOJ1047][HAOI2007]理想的正方形(单调队列,动态规划) 题面 BZOJ 洛谷 题解 直接一个单调队列维护一下没给点和它前面的\(n\)个位置的最大值,再用一次单调队列维护连续\(n ...

  9. bzoj千题计划215:bzoj1047: [HAOI2007]理想的正方形

    http://www.lydsy.com/JudgeOnline/problem.php?id=1047 先用单调队列求出每横着n个最大值 再在里面用单调队列求出每竖着n个的最大值 这样一个位置就代表 ...

  10. 【BZOJ1047】[HAOI2007]理想的正方形

    [BZOJ1047][HAOI2007]理想的正方形 题面 bzoj 洛谷 题解 二维\(st\)表,代码是以前的 #include<iostream> #include<cstdi ...

随机推荐

  1. docker push

    一.确保docker hub上有账号 二.确认要提交的镜像的命名空间为自己账号名称 三.在本地登录docker: docker login 四.提交镜像: docker push zhengchuzh ...

  2. PHP 数组使用之道

    本文首发于 PHP 数组使用之道,转载请注明出处. 这个教程我将通过一些实用的实例和最佳实践的方式列举出 PHP 中常用的数组函数.每个 PHP 工程师都应该掌握它们的使用方法,以及如何通过组合使用来 ...

  3. SpringMVC参数接收

    1 绑定简单类型 要根据id查询商品数据,需要从请求的参数中把请求的id取出来.Id应该包含在Request对象中.可以从Request对象中取id. public ModelAndView item ...

  4. python 去掉html中其他属性,只保留href 和 src

    https://segmentfault.com/q/1010000010845573 import re #reg=r'\s+[^(href)]*=\"[^<>]+\" ...

  5. 计算1+2+...+100之和<for循环的学习>

    #include <stdio.h> /* 计算1+2+....+100 soulsjie 20170525 */ void main(){ int i; int s=0; for(i=0 ...

  6. bzoj3545 Peaks 线段树合并

    离线乱搞... 也就是一个线段树合并没什么 #include<algorithm> #include<iostream> #include<cstring> #in ...

  7. [运维]ELK实现日志监控告警

    https://blog.csdn.net/yeweiouyang/article/details/54948846

  8. javabean组件

    javaBean组件引入: javaBean是使用java语言开发的一个可重用的组件,在Jsp开发中可以使用javaBean减少重复代码,使整个JSP代码的开发更简洁. 我们首先创建一个类叫做Stud ...

  9. DTRACE简介(2)

    By samwan on 三月 21, 2007 通过上一次的介绍,相信大家对DTRACE已经有了一个初步的认识.上一次结束时专门留了一个例子,可能大家第一次看有很多不明白的地方,没有关系,随着我们对 ...

  10. TensorFlow-GPU环境配置之三——安装bazel

    TensorFlow的源码需要使用bazel进行编译,所以需要安装bazel构建工具 1.安装JDK 8 sudo add-apt-repository ppa:webupd8team/java su ...