1.1.2最小生成树(Kruskal和Prim算法)
部分内容摘自 勿在浮沙筑高台
http://blog.csdn.net/luoshixian099/article/details/51908175
关于图的几个概念定义:
- 连通图:在
无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图。 - 强连通图:在
有向图中,若任意两个顶点vi与vj都有路径相通,则称该有向图为强连通图。 - 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权;权代表着连接连个顶点的代价,称这种连通图叫做连通网。
- 生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环。
- 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。
下面介绍两种求最小生成树算法
1.Kruskal算法
此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。
1. 把图中的所有边按代价从小到大排序;
2. 把图中的n个顶点看成独立的n棵树组成的森林;
3. 按权值从小到大选择边,所选的边连接的两个顶点ui,vi,应属于两颗不同的树,则成为最小生成树的一条边,并将这两颗树合并作为一颗树。
4. 重复(3),直到所有顶点都在一颗树内或者有n-1条边为止。
2.Prim算法
此算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中。算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点。
图的所有顶点集合为VV;初始令集合 u=s,v=V−uu=s,v=V−u" role="presentation">u=s,v=V−uu=s,v=V−uu=s,v=V−uu=s,v=V−u;
在两个集合u,vu,v能够组成的边中,选择一条代价最小的边(u0,v0),加入到最小生成树中,并把v0并入到集合u中。
重复上述步骤,直到最小生成树有n-1条边或者n个顶点为止。
由于不断向集合u中加点,所以最小代价边必须同步更新;需要建立一个辅助数组closedge,用来维护集合v中每个顶点与集合u中最小代价边信息,:
struct
{
char vertexData //表示u中顶点信息
UINT lowestcost //最小代价
}closedge[vexCounts]
3.最小生成树Kruskal算法+并查集实现
4.最小生成树 Prim算法
1.1.2最小生成树(Kruskal和Prim算法)的更多相关文章
- 最小生成树——Kruskal与Prim算法
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...
- 关于最小生成树 Kruskal 和 Prim 的简述(图论)
模版题为[poj 1287]Networking. 题意我就不说了,我就想简单讲一下Kruskal和Prim算法.卡Kruskal的题似乎几乎为0.(●-`o´-)ノ 假设有一个N个点的连通图,有M条 ...
- Kruskal和Prim算法求最小生成树
Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回 ...
- 最小生成树(Kruskal和Prim算法)
关于图的几个概念定义: 关于图的几个概念定义: 连通图:在无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vi与vj都有路 ...
- 最小生成树的kruskal、prim算法
kruskal算法和prim算法 都说 kruskal是加边法,prim是加点法 这篇解释也不错:这篇 1.kruskal算法 因为是加边法,所以这个方法比较合适稀疏图.要码这个需要先懂并查集.因为我 ...
- 算法导论--最小生成树(Kruskal和Prim算法)
转载出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51908175 关于图的几个概念定义: 连通图:在无向图中,若任意两个顶 ...
- 数据结构与算法--最小生成树之Prim算法
数据结构与算法--最小生成树之Prim算法 加权图是一种为每条边关联一个权值或称为成本的图模型.所谓生成树,是某图的一棵含有全部n个顶点的无环连通子图,它有n - 1条边.最小生成树(MST)是加权图 ...
- [讲解]prim算法<最小生成树>
最小生成树的方法一般比较常用的就是kruskal和prim算法 一个是按边从小到大加,一个是按点从小到大加,两个方法都是比较常用的,都不是很难... kruskal算法在本文里我就不讲了,本文的重点是 ...
- hiho 1097 最小生成树一·Prim算法 (最小生成树)
题目: 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问 ...
随机推荐
- zookeeper客户端
查看具体结点信息 bash zkServer.sh status 查看哪个结点被选作leader或者followerecho stat|nc 127.0.0.1 2181 测试是否启动了该Server ...
- 【转】nginx 和 php-fpm 通信使用unix socket还是TCP,及其配置
原文: http://blog.csdn.net/pcyph/article/details/46513521 -------------------------------------------- ...
- How to Uninstall Internet Explorer 11 for Windows 7
Internet Explorer 11 is the newest version of Microsoft's web browser, but not everyone is a fan. If ...
- 巧用Drawable 实现Android UI 元素间距效果
源文地址: 巧用Drawable 实现Android UI 元素间距效果 在大部分的移动UI或者Web UI都是基于网格概念而设计的.这种网格一般都是有一些对其的方块组成,然后它们组合成为一个块.使用 ...
- 使用VLC搭建视频直播服务器
去年我们信息之夜我们进行过视频直播服务,当时我们使用了WMS(Windows Media Server)实现了这个服务,但是编码是微软的WMV,因而像iPhone/Android这样的智能手机无法观看 ...
- 理解Paxos Made Practical
Paxos Made Practical 当一个组中一台机器提出一个值时,其它成员机器通过PAXOS算法在这个值上达成一致. Paxos分三个阶段. 第一阶段: 提出者会选出一个提议编号n(n> ...
- Windows下安装MySQL5.6绿色版
建议安装MySQL绿色版的,什么是绿色版的?就是免安装,下载下来的截图是这样的 在该目录下创建一个文件夹/data用于存放数据, 新建一个my.ini文件,my.ini里面最基本的配置如下,my.in ...
- windows内存管理的机制以及优缺点
分页存储管理基本思想:用户程序的地址空间被划分成若干固定大小的区域,称为“页”,相应地,内存空间分成若干个物理块,页和块的大小相等.可将用户程序的任一页放在内存的任一块中,实现了离散分配. 分段存储管 ...
- Android 封装实现各种样式对话框
先上图 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/disso ...
- QT学习笔记(一)——ui的认识
////////////2015/08/06/////////////////// ///////////by xbw////////////////////////// //////////环境 Q ...