部分内容摘自 勿在浮沙筑高台

http://blog.csdn.net/luoshixian099/article/details/51908175

关于图的几个概念定义:

  • 连通图:在无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图。
  • 强连通图:在有向图中,若任意两个顶点vi与vj都有路径相通,则称该有向图为强连通图。
  • 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权;权代表着连接连个顶点的代价,称这种连通图叫做连通网。
  • 生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环。
  • 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。

下面介绍两种求最小生成树算法

1.Kruskal算法

此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。

1. 把图中的所有边按代价从小到大排序;

2. 把图中的n个顶点看成独立的n棵树组成的森林;

3. 按权值从小到大选择边,所选的边连接的两个顶点ui,vi,应属于两颗不同的树,则成为最小生成树的一条边,并将这两颗树合并作为一颗树。

4. 重复(3),直到所有顶点都在一颗树内或者有n-1条边为止。

2.Prim算法

此算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中。算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点。

图的所有顶点集合为VV;初始令集合 u=s,v=V−uu=s,v=V−u" role="presentation">u=s,v=V−uu=s,v=V−uu=s,v=V−uu=s,v=V−u;

在两个集合u,vu,v能够组成的边中,选择一条代价最小的边(u0,v0),加入到最小生成树中,并把v0并入到集合u中。

重复上述步骤,直到最小生成树有n-1条边或者n个顶点为止。

由于不断向集合u中加点,所以最小代价边必须同步更新;需要建立一个辅助数组closedge,用来维护集合v中每个顶点与集合u中最小代价边信息,:

struct
{
char vertexData //表示u中顶点信息
UINT lowestcost //最小代价
}closedge[vexCounts]

3.最小生成树Kruskal算法+并查集实现

Veegin博客

HDU 1863 畅通工程(Kruskal+并查集)

4.最小生成树 Prim算法

POJ 1258 Agri-Net(Prim求最小生成树)

1.1.2最小生成树(Kruskal和Prim算法)的更多相关文章

  1. 最小生成树——Kruskal与Prim算法

    最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...

  2. 关于最小生成树 Kruskal 和 Prim 的简述(图论)

    模版题为[poj 1287]Networking. 题意我就不说了,我就想简单讲一下Kruskal和Prim算法.卡Kruskal的题似乎几乎为0.(●-`o´-)ノ 假设有一个N个点的连通图,有M条 ...

  3. Kruskal和Prim算法求最小生成树

    Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回 ...

  4. 最小生成树(Kruskal和Prim算法)

    关于图的几个概念定义:          关于图的几个概念定义: 连通图:在无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vi与vj都有路 ...

  5. 最小生成树的kruskal、prim算法

    kruskal算法和prim算法 都说 kruskal是加边法,prim是加点法 这篇解释也不错:这篇 1.kruskal算法 因为是加边法,所以这个方法比较合适稀疏图.要码这个需要先懂并查集.因为我 ...

  6. 算法导论--最小生成树(Kruskal和Prim算法)

    转载出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51908175 关于图的几个概念定义: 连通图:在无向图中,若任意两个顶 ...

  7. 数据结构与算法--最小生成树之Prim算法

    数据结构与算法--最小生成树之Prim算法 加权图是一种为每条边关联一个权值或称为成本的图模型.所谓生成树,是某图的一棵含有全部n个顶点的无环连通子图,它有n - 1条边.最小生成树(MST)是加权图 ...

  8. [讲解]prim算法<最小生成树>

    最小生成树的方法一般比较常用的就是kruskal和prim算法 一个是按边从小到大加,一个是按点从小到大加,两个方法都是比较常用的,都不是很难... kruskal算法在本文里我就不讲了,本文的重点是 ...

  9. hiho 1097 最小生成树一·Prim算法 (最小生成树)

    题目: 时间限制:10000ms 单点时限:1000ms 内存限制:256MB   描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问 ...

随机推荐

  1. Windows平台下Git(gitblit)服务器搭建

    环境:Windows 10 专业版32位 因为公司服务器上已经搭了Visual SVN等,只好在Windows上搭个Git Server给大家用. 参考链接:http://www.cnblogs.co ...

  2. Android中的图片查看器

    本案例,使用Eclipse来开发Android2.1版本号的图片查看器. 1)首先,打开Eclipse.新建一个Android2.1版本号的项目ShowTu,打开res/values中文件夹下的str ...

  3. AFNetworking配合Swift3.0请求数据

    首先用桥接或pods将AFNetworking导入项目,在这不再赘述,然后创建一个单例NetWorkTools.swift 继承:AFHTTPSessionManager import UIKit i ...

  4. E. Dreamoon and Strings(Codeforces Round #272)

    E. Dreamoon and Strings time limit per test 1 second memory limit per test 256 megabytes input stand ...

  5. 一个关于MYSQL IFNULL的用法

    select a.receiveID,(a.num - IFNULL(b.num,0)) as num from (SELECT num,receiveID from dog_giftnumrecor ...

  6. 安装PyQt5和Eric6

    安装官方的指引,安装起来本来是非常简单的,但是我前后折腾了两天,甚至连Eric得源码都去调试都没成功.过程如下: 在PyQt5的官网链接中下载轮子 PyQt5-5.7.1-5.7.1-cp34.cp3 ...

  7. UVA 1400 1400 - &quot;Ray, Pass me the dishes!&quot;(线段树)

    UVA 1400 - "Ray, Pass me the dishes!" option=com_onlinejudge&Itemid=8&page=show_pr ...

  8. 像感冒一样的contains error

    转自 http://blog.csdn.net/zhufuing/article/details/8135270          Android开发中的问题总是多种多样,今天我来总结一个浪费了我一个 ...

  9. Responsive Nav

    引入文件 <!-- 引入这些文件至 <head> 中 --> <link rel="stylesheet" href="responsive ...

  10. Spring Cloud 学习总结001-服务治理-Eureka

    学习参考:http://blog.didispace.com/Spring-Cloud%E5%9F%BA%E7%A1%80%E6%95%99%E7%A8%8B/ spring cloud由[服务注册中 ...