\(\\\)

\(Description\)


给出\(K\)种颜料各自的个数\(C_i\),每一个颜料只够涂一个格子,求将颜料用完,涂一排格子,每个格子只能涂一次的条件下,相邻两个格子的颜色互不相同的方案数对\(10^9+7\)取模的结果。

  • \(K\in [1,15]\),\(C_i\in [1,5]\)

\(\\\)

\(Solution\)


想的map压缩状态量记搜挂了

想的容斥记搜求组合数排列数取反挂了

正解真是神仙计数题做的还是少,基本的思路模型还是没有。

  • 注意到颜色相同的颜料性质是一致的。
  • 基于开始想的两种方案状态量太大,记搜也会超时,而将一类颜料看作一种之后,状态量大大减少,相当于只有\(5\)种颜料,状态里还需记录上一个颜料属于哪一类即可。
  • 设计状态\(f[n_1][n_2][n_3][n_4][n_5][last]\)表示,剩余个数分别为\(1\text~5\)的颜料各有几个,上一次使用的颜料使用前剩几个,此时到用完所有颜料的总涂色方案数。
  • 搜起来就很简单啦,直接考虑搜哪一位递归下去,到全是\(0\)了答案就是\(1\),搜完累计答案时,因为一类颜料是相同的,所以直接乘上该决策的可行颜料个数。
  • 一些就我会犯的zz错误细节要注意:
    • 优先判断搜索的颜料还有没有再考虑搜没搜到过,否则会数组越界
    • 注意到状态设计是使用前剩几个所以判断可行颜料个数时,判断时应该是上一个是否是当前\(+1\)而不是是否相同,因为你拿了一次个数一定减了一个\(1\)。
    • \(+1-1\)的时候注意是成对存在的不要光顾着-1
  • 这样搜索的优越性在于,他的状态量少,代表性强,只关心相同性质的数的个数,与一些问题的精简状态量思想异曲同工但就是想不到在这里用。

\(\\\)

\(Code\)


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define R register
#define gc getchar
#define mod 1000000007ll
using namespace std;
typedef long long ll; inline ll rd(){
ll x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
} ll n,s[10],f[16][16][16][16][16][10]; void dfs(ll n1,ll n2,ll n3,ll n4,ll n5,ll lst){
if((n1|n2|n3|n4|n5)==0ll){f[0][0][0][0][0][lst]=1ll;return;}
if(n1>0ll&&!f[n1-1][n2][n3][n4][n5][1]) dfs(n1-1,n2,n3,n4,n5,1);
if(n2>0ll&&!f[n1+1][n2-1][n3][n4][n5][2]) dfs(n1+1,n2-1,n3,n4,n5,2);
if(n3>0ll&&!f[n1][n2+1][n3-1][n4][n5][3]) dfs(n1,n2+1,n3-1,n4,n5,3);
if(n4>0ll&&!f[n1][n2][n3+1][n4-1][n5][4]) dfs(n1,n2,n3+1,n4-1,n5,4);
if(n5>0ll&&!f[n1][n2][n3][n4+1][n5-1][5]) dfs(n1,n2,n3,n4+1,n5-1,5);
if(n2>0ll) (f[n1][n2][n3][n4][n5][lst]+=(n2-(lst==3))*f[n1+1][n2-1][n3][n4][n5][2])%=mod;
if(n3>0ll) (f[n1][n2][n3][n4][n5][lst]+=(n3-(lst==4))*f[n1][n2+1][n3-1][n4][n5][3])%=mod;
if(n4>0ll) (f[n1][n2][n3][n4][n5][lst]+=(n4-(lst==5))*f[n1][n2][n3+1][n4-1][n5][4])%=mod;
if(n1>0ll) (f[n1][n2][n3][n4][n5][lst]+=(n1-(lst==2))*f[n1-1][n2][n3][n4][n5][1])%=mod;
if(n5>0ll)(f[n1][n2][n3][n4][n5][lst]+=n5*f[n1][n2][n3][n4+1][n5-1][5])%=mod;
} int main(){
n=rd();
for(R ll i=1;i<=n;++i) ++s[rd()];
dfs(s[1],s[2],s[3],s[4],s[5],6);
printf("%lld\n",f[s[1]][s[2]][s[3]][s[4]][s[5]][6]);
return 0;
}

[ SCOI 2008 ] 着色方案的更多相关文章

  1. [BZOJ 1079][SCOI 2008]着色方案

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2237  Solved: 1361[Submit][Stat ...

  2. bzoj 1079 着色方案

    题目: 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其 中第i 种颜色的油漆足够涂ci 个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得 ...

  3. BZOJ 1079: [SCOI2008]着色方案 记忆化搜索

    1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  4. 【BZOJ 1079】[SCOI2008]着色方案

    Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木 ...

  5. bzoj1079: [SCOI2008]着色方案

    ci<=5直接想到的就是5维dp了...dp方程YY起来很好玩...写成记忆化搜索比较容易 #include<cstdio> #include<cstring> #inc ...

  6. 完美卸载SQL Server 2008的方案

    转自完美卸载SQL Server 2008的方案 针对SQL数据库卸载不完全的现象,做了如下总结:   1,控制面板 卸载   首先,打开控制面板,按照"安装时间"进行排序,卸载S ...

  7. bzoj 1079: [SCOI2008]着色方案 DP

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 803  Solved: 512[Submit][Status ...

  8. BZOJ 1079: [SCOI2008]着色方案(巧妙的dp)

    BZOJ 1079: [SCOI2008]着色方案(巧妙的dp) 题意:有\(n\)个木块排成一行,从左到右依次编号为\(1\)~\(n\).你有\(k\)种颜色的油漆,其中第\(i\)种颜色的油漆足 ...

  9. [SCOI2008]着色方案

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2228  Solved: 1353[Submit][Stat ...

随机推荐

  1. hadoop balancer 二

    1.每次迭代一个datanode会移动不超过如下两者中较小的一个的数据量 1)10G 2)能力阈值 dfs.datanode.balance.bandwidthPerSec 每次迭代时间不会超过20分 ...

  2. Java并发编程:线程池 - 实例

    代码块: public class test { public static void main(String[] args) { test t = new test(); ThreadPoolExe ...

  3. Codeforces Round #232 (Div. 2) On Sum of Fractions

    Let's assume that v(n) is the largest prime number, that does not exceed n; u(n) is the smallest pri ...

  4. 【Tomcat】tomcat配置多域名和虚拟路径

    当我们用浏览器在访问网页的时候,如访问www.baidu.com,一般都认为会在DNS服务器上找这个域名对应的IP,然后向这个IP发送请求 并响应,其实在DNS服务器解析之前,本机会先在你的系统配置文 ...

  5. java多线程编程核心技术(三)--线程间通信

    1.等待/通知机制 1.wait()方法:使当前执行代码的线程进行等待.wait()方法是Object类的方法,该方法将当前线程放入“预执行队列”中,并在wait()所处的代码行处停止执行.只到被唤起 ...

  6. Hero HDU4310 贪心

    When playing DotA with god-like rivals and pig-like team members, you have to face an embarrassing s ...

  7. 洛谷——P2935 [USACO09JAN]最好的地方Best Spot

    P2935 [USACO09JAN]最好的地方Best Spot 题目描述 Bessie, always wishing to optimize her life, has realized that ...

  8. Java数据库连接池研究

    一.背景 连接池简介: 连接池初始化时创建一定数量的连接,然后从连接池中重用连接,而不是每次创建一个新的. 数据库连接是一种关键的.有限的.昂贵的资源,这一点在多用户的网页应用程序中体现得尤为突出.对 ...

  9. Microsoft SQL Server Query Processor Internals and Architecture

    https://msdn.microsoft.com/en-us/library/aa226174(v=sql.70).aspx

  10. NYOJ 16 矩形嵌套 (DAG上的DP)

    矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 有n个矩形,每个矩形能够用a,b来描写叙述.表示长和宽.矩形X(a,b)能够嵌套在矩形Y(c,d)中当且仅当 ...