CRB and Candies(组合数学+求逆元+lcm)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5407
题目:
He wonders how many combinations he can select.
Can you answer his question for all K(0 ≤ K ≤ N)?
CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.
1 ≤ T ≤ 300
1 ≤ N ≤ 106
1
2
3
4
5
2
3
12
10
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; typedef long long ll;
const int maxn = 1e6 + ;
const int mod = 1e9 + ;
int t, n, len;
int p[maxn], is_prime[maxn]; void init() {
len = ;
for (int i = ; i < maxn; i++) {
p[i] = ;
}
p[] = p[] = ;
for (int i = ; i * i < maxn; i++) {
if (p[i]) {
for (int j = i * i; j < maxn; j += i) {
p[j] = ;
}
}
}
for(int i = ; i < maxn; i++) {
if(p[i]) {
is_prime[len++] = i;
}
}
} ll ModPow(ll x, ll p) {
ll rec = ;
while (p) {
if (p & ) rec = (ll) rec * x % mod;
x = (ll) x * x % mod;
p >>= ;
}
return rec;
} int main() {
init();
cin >> t;
while (t--) {
cin >> n;
ll ans = , tmp;
n++;
for (int i = ; i < len && is_prime[i] <= n; i++) {
tmp = ;
while (tmp * is_prime[i] <= n) {
tmp = tmp * is_prime[i];
}
ans = ans * tmp % mod;
}
cout << (ans * ModPow(n, mod - ) % mod) << endl;
}
return ;
}
CRB and Candies(组合数学+求逆元+lcm)的更多相关文章
- HDU5407 CRB and Candies 【LCM递推】
HDU5407 CRB and Candies 题意: 计算\(LCM(C(n,0),C(n,1),C(n,2),\cdots,C(n,n-1),C(n,n))\) \(n\le 10^6\) 题解: ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- CRB and Candies LCM 性质
题目 CRB and Candies 题意 \[ \text{给定正整数N,求} LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),..., ...
- bzoj4591 [Shoi2015]超能粒子炮·改——组合数学(+求阶乘逆元新姿势)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 这题不是很裸啊(所以我就不会了) 得稍微推导一下,看这个博客好了:https://bl ...
- Hdu 5407 CRB and Candies (找规律)
题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...
- 【HDOJ 5407】 CRB and Candies (大犇推导
pid=5407">[HDOJ 5407] CRB and Candies 赛后看这题题解仅仅有满眼的迷茫------ g(N) = LCM(C(N,0),C(N,1),...,C(N ...
- 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
随机推荐
- osg::Vec2 Vec3 Vec4
osg::Vec2可以用于保存2D纹理坐标. osg::Vec3是一个三维浮点数数组. osg::Vec4用于保存颜色数据.
- YaoLingJump开发者日志(八)V1.1版本完成
跳跃吧瑶玲下载连接 官网下载(网站服务器不支持10M以上的文件上传-_-||) 百度网盘下载 介绍 忙里偷闲,把之前的工作整理了一下完成V1.1版本,下面是更新! (1)去掉了积分榜. (2)增加 ...
- 数论的欧拉定理证明 & 欧拉函数公式(转载)
欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数 ...
- windows批处理学习---01
一. 标记符号: CR(0D) 命令行结束符 Escape(1B) ANSI转义字符引导符 Space() 常用的参数界定符 Tab() ; = 不常用的参数界定符 + COPY命令文件连接符 * ? ...
- (转)linux IO 内核参数调优 之 参数调节和场景分析
1. pdflush刷新脏数据条件 (linux IO 内核参数调优 之 原理和参数介绍)上一章节讲述了IO内核调优介个重要参数参数. 总结可知cached中的脏数据满足如下几个条件中一个或者多个的时 ...
- C++除法运算 // 静态断言
1.C++中"/"运算:对两个整数做除法,结果仍为整数,如果它的商包含小数部分,则小树部分会被截除. C++ Primer 第五章 P130 2.静态断言(static_asser ...
- BZOJ 1066 蜥蜴(网络流)
很普通的拆点网络流,把每个柱子拆成两个点(i,j,0)和(i,j,1).对于柱子的高度限制则加边((i,j,0),(i,j,1),height). 两个柱子能互相到达则加边((i,j,1),(i1,j ...
- Apple - Hdu5160
Problem Description We are going to distribute apples to n children. Every child has his/her desired ...
- POJ1474:Video Surveillance——题解
http://poj.org/problem?id=1474 题目大意:给按照顺时针序的多边形顶点,问其是否有内核. —————————————————————————————— (和上道题目一模一样 ...
- POJ3422:Kaka's Matrix Travels——题解
http://poj.org/problem?id=3422 题目大意: 从左上角走到右下角,中途取数(数>=0),然后该点的数变为0,求走k的总价值和最大值. ———————————————— ...