CRB and Candies(组合数学+求逆元+lcm)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5407
题目:
He wonders how many combinations he can select.
Can you answer his question for all K(0 ≤ K ≤ N)?
CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.
1 ≤ T ≤ 300
1 ≤ N ≤ 106
1
2
3
4
5
2
3
12
10
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; typedef long long ll;
const int maxn = 1e6 + ;
const int mod = 1e9 + ;
int t, n, len;
int p[maxn], is_prime[maxn]; void init() {
len = ;
for (int i = ; i < maxn; i++) {
p[i] = ;
}
p[] = p[] = ;
for (int i = ; i * i < maxn; i++) {
if (p[i]) {
for (int j = i * i; j < maxn; j += i) {
p[j] = ;
}
}
}
for(int i = ; i < maxn; i++) {
if(p[i]) {
is_prime[len++] = i;
}
}
} ll ModPow(ll x, ll p) {
ll rec = ;
while (p) {
if (p & ) rec = (ll) rec * x % mod;
x = (ll) x * x % mod;
p >>= ;
}
return rec;
} int main() {
init();
cin >> t;
while (t--) {
cin >> n;
ll ans = , tmp;
n++;
for (int i = ; i < len && is_prime[i] <= n; i++) {
tmp = ;
while (tmp * is_prime[i] <= n) {
tmp = tmp * is_prime[i];
}
ans = ans * tmp % mod;
}
cout << (ans * ModPow(n, mod - ) % mod) << endl;
}
return ;
}
CRB and Candies(组合数学+求逆元+lcm)的更多相关文章
- HDU5407 CRB and Candies 【LCM递推】
HDU5407 CRB and Candies 题意: 计算\(LCM(C(n,0),C(n,1),C(n,2),\cdots,C(n,n-1),C(n,n))\) \(n\le 10^6\) 题解: ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- CRB and Candies LCM 性质
题目 CRB and Candies 题意 \[ \text{给定正整数N,求} LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),..., ...
- bzoj4591 [Shoi2015]超能粒子炮·改——组合数学(+求阶乘逆元新姿势)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 这题不是很裸啊(所以我就不会了) 得稍微推导一下,看这个博客好了:https://bl ...
- Hdu 5407 CRB and Candies (找规律)
题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...
- 【HDOJ 5407】 CRB and Candies (大犇推导
pid=5407">[HDOJ 5407] CRB and Candies 赛后看这题题解仅仅有满眼的迷茫------ g(N) = LCM(C(N,0),C(N,1),...,C(N ...
- 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
随机推荐
- iOS- iOS 7 的后台多任务 (Multitasking) 对比之前的异同、具体机制、变化
简单来说,这玩意是对开发者友好,但对设备不友好的(可能会偷偷摸摸地占用流量和电量).对用户来说,如果你带宽够,对发热不敏感的话,会得到更好的应用体验. 从 iOS 4 开始,应用就可以在退到后台后,继 ...
- 在linux下如何显示隐藏文件
#显示所有文件(包含隐藏文件)ls -a #只显示隐藏文件l.或者ls -d .* #在XWindow的KDE桌面中在"查看(View)"菜单里选"显示隐藏文件(Show ...
- python爬虫 --- 简书评论
某些网站的一些数据是通过js加载的 ,所以爬取下来的数据拿不到, 找到评论的地址 .进行请求获取评论数据 #coding=utf-8 import json import requests def r ...
- Jenkins系列-Jenkins邮件通知
一.安装邮件插件 由于Jenkins自带的邮件功能比较鸡肋,因此这里推荐安装专门的邮件插件,不过下面也会顺带介绍如何配置Jenkins自带的邮件功能作用. 可以通过系统管理→管理插件→可选插件,选择E ...
- python: error while loading shared libraries: libpython2.7.so.1.0: cannot open shared object file: No such file or directory
#vi /etc/ld.so.conf.d/python2.7.conf 加入/usr/local/python27/lib 保存退出后执行 #ldconfig
- 第24天:js-函数变量声明提升
一.函数声明1.自定义函数function fun1(){ alert("我是自定义函数");}fun2();//函数不调用,自己不执行2.直接量声明var fun2=functi ...
- Go语言【第五篇】:Go条件语句
Go语言条件 条件语句需要开发者通过指定一个或多个条件,并通过测试条件是否为true来决定是否执行指定语句,并在条件为false的情况再执行另外的语句.下图展示了程序语言中条件语句的结构: Go语言提 ...
- 【题解】APIO2018 Duathlon 铁人两项
首先对于给出的图建立圆方树,然后我们分类讨论每一个点作为中间的中转站出现的情况有多少种,累积到 \(ans\) 中. 对于圆点:在任意两个子树内分别选出一个节点都是合法的. 对于方点:连接向方点的点均 ...
- Android Apk的反编译与代码混淆
一.反编译 1.获取工具: 既然是反编译,肯定要用到一些相关的工具,工具可以到这里下载,里面包含三个文件夹,用于反编译,查看反编译之后的代码: 其实这两工具都是google官方出的,也可在google ...
- Android View 绘制刷新流程分析
Android中对View的更新有很多种方式,使用时要区分不同的应用场合.1.不使用多线程和双缓冲 这种情况最简单,一般只是希望在View发生改变时对UI进行重绘.你只需显式地调用View对 ...