BZOJ1297:[SCOI2009]迷路——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1297
windy在有向图中迷路了。 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在T 时刻到达节点 N-1。 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。
我太菜了……参考:http://blog.csdn.net/popoqqq/article/details/41965031
思考当边权为1时,a[i][j]=1可以表示为i到j时间为T=1的方案数为1。
那么显然我们可以求出T=2的a[i][j]=sigma(a[i][k]*a[k][j])。
以此类推求出T时间的a[i][j]……等等,这不显然是矩阵乘法快速幂吗?
那么考虑边权不为1的情况:我们把点拆开强行让他们变成1不就可以了吗。
矩阵自乘T次后答案就是a[0][n-1]。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
const int p=;
char s[N];
int m;
struct node{
int g[N][N];
};
void buildI(node &a){
for(int i=;i<=m;i++){
for(int j=;j<=m;j++){
a.g[i][j]=(i==j);
}
}
}
void multi(node x,node y,node &z){
memset(z.g,,sizeof(z.g));
for(int i=;i<=m;i++){
for(int j=;j<=m;j++){
if(x.g[i][j]){
for(int k=;k<=m;k++){
z.g[i][k]+=x.g[i][j]%p*y.g[j][k]%p;
z.g[i][k]%=p;
}
}
}
}
return;
}
node a,b;
void qpow(int k){
buildI(a);
while(k){
if(k&)multi(a,b,a);
multi(b,b,b);
k>>=;
}
return;
}
int solve(int k,int n){
qpow(k);
return a.g[][n]%p;
}
int t,n;
inline int tp(int i,int j){return (j-)*n+i;}
int main(){
scanf("%d%d",&n,&t);m=n*;
for(int i=;i<=n;i++){
for(int j=;j<=;j++){
b.g[tp(i,j)][tp(i,j-)]=;
}
}
for(int i=;i<=n;i++){
scanf("%s",s+);
for(int j=;j<=n;j++){
int k=s[j]-'';
b.g[i][tp(j,k)]=;
}
}
printf("%d\n",solve(t,n));
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ1297:[SCOI2009]迷路——题解的更多相关文章
- 【矩阵快速幂】bzoj1297 [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status ...
- [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1385 Solved: 993[Submit][Status] ...
- BZOJ1297 [SCOI2009]迷路 矩阵乘法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...
- BZOJ1297 [SCOI2009]迷路 【矩阵优化dp】
题目 windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意: ...
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- bzoj1297: [SCOI2009]迷路
矩阵. 一个图的邻接矩阵的m次幂相当于 长度恰好为m的路径数.这要求边权为1. 因为边权小于等于9,所以可以把一个点拆成9的点. 拆成的第(i+1)个点向第i个点连边. 如果存在边(u,v,w) 就由 ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)
题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...
- bzoj1297 [SCOI2009]迷路——拆点+矩阵快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297 一看感觉是矩阵快速幂之类的,但边权不好处理啊: 普通的矩阵快速幂只能处理边权为1的,所 ...
随机推荐
- Mybatis JPA 插件简介
前段时间了解到Spring JPA,感觉挺好用,但其依赖于Hibernate,本人看到Hibernate就头大(不是说Hibernate不好哈,而是进阶太难),于是做了一个迷你版的Mybatis JP ...
- Ajax中post请求和get请求的区别
首先提出两点Post比Get大的不同地方 1.post请求浏览器每次不会缓存,每次都会重新请求,而get请求不要缓存的时候,需要手动设置 写上xhr.setRequestHeader("If ...
- uvaoj1225Digit Counting(暴力)
Trung is bored with his mathematics homeworks. He takes a piece of chalk and starts writing a sequen ...
- 聊聊Bug引发事故该不该追求责任
最近读极客时间朱赟的一篇文章有感,在这也聊一下,在互联网的公司大多数以迭代的方式上线需求,节奏一般都比较快,经常会一个需求当天来了第二天就上线,开发和测试时间总共就两天,中间还穿插着别的需求测试,不像 ...
- lintcode100 删除排序数组中的重复数字
删除排序数组中的重复数字 给定一个排序数组,在原数组中删除重复出现的数字,使得每个元素只出现一次,并且返回新的数组的长度. 不要使用额外的数组空间,必须在原地没有额外空间的条件下完成. 您在真实的 ...
- Java进阶知识点:不可变对象与并发
一.String的不可变特性 熟悉Java的朋友都知道,Java中的String有一个很特别的特性,就是你会发现无论你调用String的什么方法,均无法修改this对象的状态.当确实需要修改Strin ...
- 菜鸟之路——机器学习之决策树个人理解及Python实现
最近开始学习机器学习,以下会记录我学习中遇到的问题以及我个人的理解 决策树算法,网上很多介绍,在这不复制粘贴.下面解释几个关键词就好. 信息熵(entropy):就是信息不确定性的多少 H(x)=-Σ ...
- Servlet过滤器介绍之原理分析
zhangjunhd 的BLOG 写留言去学院学习发消息 加友情链接进家园 加好友 博客统计信息 51CTO博客之星 用户名:zhangjunhd 文章数:110 评论数:858 访问量:19 ...
- HDU 3268/POJ 3835 Columbus’s bargain(最短路径+暴力枚举)(2009 Asia Ningbo Regional)
Description On the evening of 3 August 1492, Christopher Columbus departed from Palos de la Frontera ...
- HDU 2487 Ugly Windows(暴力)(2008 Asia Regional Beijing)
Description Sheryl works for a software company in the country of Brada. Her job is to develop a Win ...