BZOJ1297:[SCOI2009]迷路——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1297
windy在有向图中迷路了。 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在T 时刻到达节点 N-1。 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。
我太菜了……参考:http://blog.csdn.net/popoqqq/article/details/41965031
思考当边权为1时,a[i][j]=1可以表示为i到j时间为T=1的方案数为1。
那么显然我们可以求出T=2的a[i][j]=sigma(a[i][k]*a[k][j])。
以此类推求出T时间的a[i][j]……等等,这不显然是矩阵乘法快速幂吗?
那么考虑边权不为1的情况:我们把点拆开强行让他们变成1不就可以了吗。
矩阵自乘T次后答案就是a[0][n-1]。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
const int p=;
char s[N];
int m;
struct node{
int g[N][N];
};
void buildI(node &a){
for(int i=;i<=m;i++){
for(int j=;j<=m;j++){
a.g[i][j]=(i==j);
}
}
}
void multi(node x,node y,node &z){
memset(z.g,,sizeof(z.g));
for(int i=;i<=m;i++){
for(int j=;j<=m;j++){
if(x.g[i][j]){
for(int k=;k<=m;k++){
z.g[i][k]+=x.g[i][j]%p*y.g[j][k]%p;
z.g[i][k]%=p;
}
}
}
}
return;
}
node a,b;
void qpow(int k){
buildI(a);
while(k){
if(k&)multi(a,b,a);
multi(b,b,b);
k>>=;
}
return;
}
int solve(int k,int n){
qpow(k);
return a.g[][n]%p;
}
int t,n;
inline int tp(int i,int j){return (j-)*n+i;}
int main(){
scanf("%d%d",&n,&t);m=n*;
for(int i=;i<=n;i++){
for(int j=;j<=;j++){
b.g[tp(i,j)][tp(i,j-)]=;
}
}
for(int i=;i<=n;i++){
scanf("%s",s+);
for(int j=;j<=n;j++){
int k=s[j]-'';
b.g[i][tp(j,k)]=;
}
}
printf("%d\n",solve(t,n));
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ1297:[SCOI2009]迷路——题解的更多相关文章
- 【矩阵快速幂】bzoj1297 [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status ...
- [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1385 Solved: 993[Submit][Status] ...
- BZOJ1297 [SCOI2009]迷路 矩阵乘法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...
- BZOJ1297 [SCOI2009]迷路 【矩阵优化dp】
题目 windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意: ...
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- bzoj1297: [SCOI2009]迷路
矩阵. 一个图的邻接矩阵的m次幂相当于 长度恰好为m的路径数.这要求边权为1. 因为边权小于等于9,所以可以把一个点拆成9的点. 拆成的第(i+1)个点向第i个点连边. 如果存在边(u,v,w) 就由 ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)
题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...
- bzoj1297 [SCOI2009]迷路——拆点+矩阵快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297 一看感觉是矩阵快速幂之类的,但边权不好处理啊: 普通的矩阵快速幂只能处理边权为1的,所 ...
随机推荐
- svn 撤销 已提交的修改
1.保证我们拿到的是最新代码: svn update 假设最新版本号是28. 2.然后找出要回滚的确切版本号: svn log [something] 假设根据svn log日志查出要回滚的 ...
- 「日常训练」Ice Cave(Codeforces Round 301 Div.2 C)
题意与分析(CodeForces 540C) 这题坑惨了我....我和一道经典的bfs题混淆了,这题比那题简单. 那题大概是这样的,一个冰塔,第一次踩某块会碎,第二次踩碎的会掉落.然后求可行解. 但是 ...
- 第二章 IP协议详解
第二章 IP协议详解 2.1 IP服务的特点 它为上层协议提供了无状态,无连接,不可靠的服务 名称 简介 优点 缺点 对付缺点的方法 无状态 IP通信双方不同步传输数据的状态信息 无须为保持通信的状态 ...
- Linux搭建mysql、apache、php服务总结
本随笔文章,由个人博客(鸟不拉屎)转移至博客园 写于:2018 年 04 月 22 日 原地址:https://niaobulashi.com/archives/linux-mysql-apache- ...
- 进度条加载与案例优化对比——python使用perf_count方法实现
本章我们将讨论python3 perf_counter()的用法及它的实际应用我从中选取两个python基于rquests库的爬虫实例代码源文件进行举例 Python3 perf_counter() ...
- leetcode-最长无重复字符的子串
参考他的人代码:https://blog.csdn.net/littlebai07/article/details/79100081 给定一个字符串,找出不含有重复字符的最长子串的长度. 示例 1: ...
- lintcode373 奇偶分割数组
奇偶分割数组 分割一个整数数组,使得奇数在前偶数在后. 您在真实的面试中是否遇到过这个题? Yes 样例 给定 [1, 2, 3, 4],返回 [1, 3, 2, 4]. 我的方法:设定两个数组,分别 ...
- 哈希表 -数据结构(C语言实现)
读数据结构与算法分析 哈希表 一种用于以常数平均时间执行插入.删除和查找操作的数据结构. 但是是无序的 一般想法 通常为一个包含关键字的具有固定大小的数组 每个关键字通过散列函数映射到数组中 冲突:两 ...
- 上楼梯问题(递归C++)
[问题描述] 小明上楼梯,一次可以迈1步,2步和3步,假设楼梯共有n个台阶,输出他所有的走法. [代码展示] #include<iostream>using namespace std;i ...
- phantomjs抛出IOException
使用phantomjs对网页进行截图遇到的问题 问题描述: 使用的phantomjs版本:phantomjs-2.1.1-windows 使用的截图js文件,\phantomjs-2.1.1-wind ...