考虑求出所有MST的权值和再除以方案数,方案数显然是2mn

  按位考虑,显然应该让MST里的边高位尽量为0。那么根据最高位是0还是1将点集划分成两部分,整张图的MST就是由两部分各自的MST之间连一条最小边得到的。两部分的MST权值和可以dp得到,即设f[i][j]表示i个点权值在0~2j-1的MST权值和,枚举最高位是0的点的数量k,由f[k][j-1]和f[i-k][j-1]转移而来。问题只剩下求最小边的权值和。

  这个东西也不是很好求,考虑求最小边不小于某值的方案数。同样根据最高位是0还是1划分点集成四个部分,转移比较显然,主要注意边界,即所有边该位都为1的情况,以及某边没有点的情况。盯着这个边界调了一下午最后发现果然这里根本就没写挂,而是预处理2k时少了一部分。惨绝人寰。

  复杂度O(n4m2m),虽然darkbzoj上只跑了3s,bzoj上还是根本卡不过去。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 51
#define M 8
#define P 258280327
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,C[N][N],f[N][M+],g[N][N][M],h[N][N][M][<<M],p[N*M];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int inv(int a)
{
int s=;
for (int k=P-;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4770.in","r",stdin);
freopen("bzoj4770.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
C[][]=;
for (int i=;i<=n;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
p[]=;for (int i=;i<(n+)*m;i++) p[i]=(p[i-]<<)%P;
for (int i=;i<=n;i++)
for (int j=;j<=n-i&&j<=i;j++)
h[i][j][][]=;
for (int k=;k<m;k++)
for (int x=;x<(<<k);x++)
{
for (int i=;i<=n;i++) h[i][][k][x]=p[i*k];
for (int i=;i<=n;i++)
for (int j=;j<=n-i&&j<=i;j++)
for (int u=;u<=i;u++)
for (int v=;v<=j;v++)
if (u==&&j==v||i==u&&v==) inc(h[i][j][k][x],1ll*h[max(u,j-v)][min(u,j-v)][k-][max(x-(<<k-),)]*h[max(i-u,v)][min(i-u,v)][k-][max(x-(<<k-),)]%P);
else inc(h[i][j][k][x],1ll*C[i][u]*C[j][v]%P*h[max(u,v)][min(u,v)][k-][x]%P*h[max(i-u,j-v)][min(i-u,j-v)][k-][x]%P);
}
for (int i=;i<=n;i++)
for (int j=;j<=n-i&&j<=i;j++)
for (int k=;k<m;k++)
for (int x=;x<(<<k);x++)
inc(g[i][j][k],h[i][j][k][x]);
for (int k=;k<=m;k++)
for (int i=;i<=n;i++)
{
inc(f[i][k],f[i][k-]);inc(f[i][k],f[i][k-]);
for (int j=;j<i;j++)
inc(f[i][k],1ll*C[i][j]*(1ll*f[j][k-]*p[(i-j)*(k-)]%P+1ll*f[i-j][k-]*p[j*(k-)]%P+p[(k-)*(i+)]+g[max(j,i-j)][min(j,i-j)][k-])%P);
}
cout<<1ll*f[n][m]*inv(p[m*n])%P;
return ;
}

BZOJ4770 图样(概率期望+动态规划)的更多相关文章

  1. 【题解】亚瑟王 HNOI 2015 BZOJ 4008 概率 期望 动态规划

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4008 一道不简单的概率和期望dp题 根据期望的线性性质,容易想到,可以算出每张卡的期望伤害, ...

  2. BZOJ5305 HAOI2018苹果树(概率期望+动态规划)

    每种父亲编号小于儿子编号的有标号二叉树的出现概率是相同的,问题相当于求所有n个点的此种树的所有结点两两距离之和. 设f[n]为答案,g[n]为所有此种树所有结点的深度之和,h[n]为此种树的个数. 枚 ...

  3. BZOJ4899 记忆的轮廓(概率期望+动态规划+决策单调性)

    容易发现跟树没什么关系,可以预处理出每个点若走向分叉点期望走多少步才能回到上个存档点,就变为链上问题了.考虑dp,显然有f[i][j]表示在i~n中设置了j个存档点,其中i设置存档点的最优期望步数.转 ...

  4. BZOJ4832 抵制克苏恩(概率期望+动态规划)

    注意到A+B+C很小,容易想到设f[i][A][B][C]为第i次攻击后有A个血量为1.B个血量为2.C个血量为3的期望伤害,倒推暴力转移即可. #include<iostream> #i ...

  5. UOJ#196. 【ZJOI2016】线段树 概率期望,动态规划

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ196.html 题解 先离散化,设离散化后的值域为 $[0,m]$ . 首先把问题转化一下,变成:对于每一个位置 $i$ ...

  6. BZOJ_3270_博物馆_(高斯消元+期望动态规划+矩阵)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3270 \(n\)个房间,刚开始两个人分别在\(a,b\),每分钟在第\(i\)个房间有\(p[ ...

  7. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  8. uvalive 7331 Hovering Hornet 半平面交+概率期望

    题意:一个骰子在一个人正方形内,蜜蜂在任意一个位置可以出现,问看到点数的期望. 思路:半平面交+概率期望 #include<cstdio> #include<cstring> ...

  9. OI队内测试一【数论概率期望】

    版权声明:未经本人允许,擅自转载,一旦发现将严肃处理,情节严重者,将追究法律责任! 序:代码部分待更[因为在家写博客,代码保存在机房] 测试分数:110 本应分数:160 改完分数:200 T1: 题 ...

随机推荐

  1. 成都Uber优步司机奖励政策(3月15日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. H5-基础-day01

    类选择器和ID选择器   相同点:可以应用于任何元素不同点: 1.ID选择器只能在文档中使用一次.与类选择器不同,在一个HTML文档中,ID选择器只能使用一次,而且仅一次.而类选择器可以使用多次. 2 ...

  3. 使用pycharm软件配置数据库可视化

    必须品: pycharm软件,专业版最好自带就有,社区版就需要安装下插件. 专业版直接会在右边的编辑框浮动,直接点开就可以配置. 如图所示,点开就可以配置相应的数据库, 点开配置完毕就可以使用了. 还 ...

  4. jQuery官网plugins栏目下那些不错的插件

    前言: 很久以前就关注过jQuery官网plugins栏目下那些全是英文的插件,本人的英文水平很菜,想要全部看懂确实是件不易之事. 好在大部分的案例中都有 view-homepage 或 Try a ...

  5. ionic typescript--验证码发送倒计时功能

    1.新建页面 ionic g page forget   2.mode.html文件 <ion-item> <ion-input clearInput [(ngModel)]='co ...

  6. JavaScript 的一些基础知识

    JavaScript基本语法 调试 打开 Chrome 开发工具 Win F12 Mac Command + Option + I 输入代码.测试执行 var str = 'evenyao' cons ...

  7. mysql 主从配置笔记

    1.master配置 server-id=1 log-bin=mysql-bin binlog-do-db=testdata binlog-ignore-db=mysql 2.master增加用户 g ...

  8. mac os x下应用endnote异常解决办法

    最近在用Office+Endnote写论文,使用拼音输入法换字时会出现重字和拼音的情况,比如我想打“桥连”,最终出现的是"qiao'lian桥lian桥连”.后来发现这个问题时由endnot ...

  9. Python变量常量及注释

    一.变量命名规则1.有字母.数字.下划线搭配组合而成2.不能以数字开头,更不能全为数字3.不能用Python的关键字4.不要太长5.名字要有意义6.不要用中文7.区分大小写8.采用驼峰体命名(多个单词 ...

  10. 如何让thinkpad X1C 用U盘 安装上专业版win10

    1 BIOS内置了文件 会导致win10 iso默认装家庭版 2 给iso 的resouse 目录中增加文件ei.cfg 3 内容如下 [EditionID]Professional[Channel] ...