Time Limit: 40 Sec  Memory Limit: 128 MB
Submit: 4186  Solved: 1629
[Submit][Status][Discuss]

Description

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
 
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。

Input

输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output

输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input

7 3
4 1 3 4 0 2 3

Sample Output

108

HINT

【样例说明】

在样例中,小H可以通过如下3轮操作得到108分:

1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置

将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。

2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数

字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+

3)=36分。

3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个

数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=

20分。

经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。

【数据规模与评分】

:数据满足2≤n≤100000,1≤k≤min(n -1,200)。

Source

这题,,做的我,,想骂人

只要你能看出,最终答案与分割顺序无关

然后剩下的就是被卡时间被卡空间被卡精度了******

按照上面说的,首先列出裸的dp方程

$f[i][j]$表示前$i$个分了$j$段,转移的时候枚举从哪里分开

时间复杂度:$O(N^2k)$

考虑优化,设$j>k$且$j$比$k$优

最后可以画为

$$S_{i} >\dfrac {S^{2}_{j}-f_{j}-\left( S^{2}_{x}-f_{k}\right) }{S_{i}-S_{k}}$$

按照套路,发现能斜率优化,然后上模板就行了,单调队列可以滚动掉

这题是我为数不多会做但是不会写代码的题

到最后还没在UOJ上卡过去

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#include<map>
#include<vector>
#define LL long long
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
char buf[ << ], *p1 = buf, *p2 = buf;
const int MAXN = ;
const LL INF = 1e18 + ;
using namespace std;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, K;
LL a[MAXN], sum[MAXN];
LL f[MAXN][];
int pre[MAXN][], q[MAXN], h, t, now = ;
LL X(int x) {
return sum[x];
}
LL Y(int x) {
return sum[x] * sum[x] - f[x][now ^ ];
}
double slope(int x, int y) {
//printf("%d %d\n", x, y);
if(X(y) == X(x)) return -INF;
return (double)(Y(y) - Y(x)) / (X(y) - X(x));
}
main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
N = read(); K = read();
for(int i = ; i <= N; i++) a[i] = read(), sum[i] = sum[i - ] + a[i]; for(int j = ; j <= K; j++) {
h = t = ; now ^= ;
for(int i = ; i <= N; i++) {
while(h < t && slope(q[h], q[h + ]) <= (double)sum[i]) h++;
int k = q[h];
f[i][now] = f[k][now ^ ] + (sum[i] - sum[k]) * sum[k];
pre[i][j] = k;
while(h < t && (slope(q[t - ], q[t]) >= slope(q[t], i))) --t;
q[++t] = i;
}
}
printf("%lld\n", f[N][now]);
}

BZOJ3675: [Apio2014]序列分割(斜率优化)的更多相关文章

  1. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  2. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  3. 【bzoj3675】[Apio2014]序列分割 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...

  4. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

  5. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  6. [Bzoj3675][Apio2014]序列分割(斜率优化)

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4021  Solved: 1569[Submit][Stat ...

  7. BZOJ3675 [Apio2014]序列分割 【斜率优化dp】

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB Submit: 3366  Solved: 1355 [Submit][St ...

  8. BZOJ3675 [Apio2014]序列分割 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8697258.html 题目传送门 - BZOJ3675 题意 对于一个非负整数序列,小H需要重复k次以下的步骤: ...

  9. 【BZOJ3675】【APIO2014】序列分割 [斜率优化DP]

    序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 小H最近迷上了一个分隔序列的游戏. ...

随机推荐

  1. easyui grid 里的可编辑text 加清空图标

    $.extend($.fn.datagrid.defaults.editors, { text: { init: function (container, options) { var _opt = ...

  2. hdu 1010 Tempter of the Bone(dfs)

    Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

  3. Python爬虫教程-30-Scrapy 爬虫框架介绍

    从本篇开始学习 Scrapy 爬虫框架 Python爬虫教程-30-Scrapy 爬虫框架介绍 框架:框架就是对于相同的相似的部分,代码做到不出错,而我们就可以将注意力放到我们自己的部分了 常见爬虫框 ...

  4. Python爬虫教程-26-Selenium + PhantomJS

    Python爬虫教程-26-Selenium + PhantomJS 动态前端页面 : JavaScript: JavaScript一种直译式脚本语言,是一种动态类型.弱类型.基于原型的语言,内置支持 ...

  5. SQL Server ->> 深入探讨SQL Server 2016新特性之 --- Row-Level Security(行级别安全控制)

    SQL Server 2016 CPT3中包含了一个新特性叫Row Level Security(RLS),允许数据库管理员根据业务需要依据客户端执行脚本的一些特性控制客户端能够访问的数据行,比如,我 ...

  6. Java程序中解决数据库超时与死锁

    Java程序中解决数据库超时与死锁 2011-06-07 11:09 佚名 帮考网 字号:T | T   Java程序中解决数据库超时与死锁,每个使用关系型数据库的程序都可能遇到数据死锁或不可用的情况 ...

  7. redis知识树

  8. 用w32tm设置服务器时间同步

    服务器时间同步是一个容易被忽视的问题,但在企业级应用环境中,不同服务器之间的时间差很可能引发应用系统问题.Windows提供的w32tm程序可以用来设置时间同步服务器,其用法如下: 1.指定外部时间源 ...

  9. Jenkins传参修改jmeter的报告名称和详细报告地址

    目前已经可以发送邮件了,我已经配置了Jenkins,但是有几个显示问题,待处理1.报告名称地址, 2详细报告地址没有做跳转 更改后为: 修改url 1.打开样式的jmeter-results-deta ...

  10. Django 按时间来查找数据库中的数据

    问题: 按时间来查找数据表中的数据. 前提: 1. 数据表student中有一个字段类型为DateField或者DateTimeField字段, 字段名是birthday. 2. 数据表中已经有些数据 ...