Time Limit: 40 Sec  Memory Limit: 128 MB
Submit: 4186  Solved: 1629
[Submit][Status][Discuss]

Description

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
 
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。

Input

输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output

输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input

7 3
4 1 3 4 0 2 3

Sample Output

108

HINT

【样例说明】

在样例中,小H可以通过如下3轮操作得到108分:

1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置

将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。

2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数

字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+

3)=36分。

3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个

数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=

20分。

经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。

【数据规模与评分】

:数据满足2≤n≤100000,1≤k≤min(n -1,200)。

Source

这题,,做的我,,想骂人

只要你能看出,最终答案与分割顺序无关

然后剩下的就是被卡时间被卡空间被卡精度了******

按照上面说的,首先列出裸的dp方程

$f[i][j]$表示前$i$个分了$j$段,转移的时候枚举从哪里分开

时间复杂度:$O(N^2k)$

考虑优化,设$j>k$且$j$比$k$优

最后可以画为

$$S_{i} >\dfrac {S^{2}_{j}-f_{j}-\left( S^{2}_{x}-f_{k}\right) }{S_{i}-S_{k}}$$

按照套路,发现能斜率优化,然后上模板就行了,单调队列可以滚动掉

这题是我为数不多会做但是不会写代码的题

到最后还没在UOJ上卡过去

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#include<map>
#include<vector>
#define LL long long
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
char buf[ << ], *p1 = buf, *p2 = buf;
const int MAXN = ;
const LL INF = 1e18 + ;
using namespace std;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, K;
LL a[MAXN], sum[MAXN];
LL f[MAXN][];
int pre[MAXN][], q[MAXN], h, t, now = ;
LL X(int x) {
return sum[x];
}
LL Y(int x) {
return sum[x] * sum[x] - f[x][now ^ ];
}
double slope(int x, int y) {
//printf("%d %d\n", x, y);
if(X(y) == X(x)) return -INF;
return (double)(Y(y) - Y(x)) / (X(y) - X(x));
}
main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
N = read(); K = read();
for(int i = ; i <= N; i++) a[i] = read(), sum[i] = sum[i - ] + a[i]; for(int j = ; j <= K; j++) {
h = t = ; now ^= ;
for(int i = ; i <= N; i++) {
while(h < t && slope(q[h], q[h + ]) <= (double)sum[i]) h++;
int k = q[h];
f[i][now] = f[k][now ^ ] + (sum[i] - sum[k]) * sum[k];
pre[i][j] = k;
while(h < t && (slope(q[t - ], q[t]) >= slope(q[t], i))) --t;
q[++t] = i;
}
}
printf("%lld\n", f[N][now]);
}

BZOJ3675: [Apio2014]序列分割(斜率优化)的更多相关文章

  1. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  2. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  3. 【bzoj3675】[Apio2014]序列分割 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...

  4. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

  5. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  6. [Bzoj3675][Apio2014]序列分割(斜率优化)

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4021  Solved: 1569[Submit][Stat ...

  7. BZOJ3675 [Apio2014]序列分割 【斜率优化dp】

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB Submit: 3366  Solved: 1355 [Submit][St ...

  8. BZOJ3675 [Apio2014]序列分割 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8697258.html 题目传送门 - BZOJ3675 题意 对于一个非负整数序列,小H需要重复k次以下的步骤: ...

  9. 【BZOJ3675】【APIO2014】序列分割 [斜率优化DP]

    序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 小H最近迷上了一个分隔序列的游戏. ...

随机推荐

  1. 02_linux常用指令

    [用户管理] 查看当前用户     whoami 新建用户     sudo adduser higginCui 查看新建用户     ls /home 使用新建用户登录     su -l higg ...

  2. JSP / JDK和Apache的配置

    系统环境:Windows7 x64 Ultimate chs 1.首先安装jdk,可以再oracle官网下载到,此处安装jdk6.0版本. 2.配置jdk环境变量: 我的电脑-->属性--> ...

  3. 分分钟搞懂 HD 钱包

    转自:http://blog.sina.com.cn/s/blog_12ce70a430102v8c7.html 第一次看到 HD 这个词被用在比特币钱包中时,很容易就把它理解成硬件(Hardware ...

  4. 生命不息学习不止,前端js学习笔记(一)

    引言 从毕业到年已经整整7年,期间一直从事.net开发做c/s从 c# 转到 wpf 而后又开始做b/s 用silverlight,从最开始的arcgis engine 到后来的silverlight ...

  5. HTML 段落p

    可以把 HTML 文档分割为若干段落. HTML 段落 段落是通过 <p> 标签定义的. 实例 <p>This is a paragraph</p> <p&g ...

  6. 【NLP_Stanford课堂】文本分类1

    文本分类实例:分辨垃圾邮件.文章作者识别.作者性别识别.电影评论情感识别(积极或消极).文章主题识别及任何可分类的任务. 一.文本分类问题定义: 输入: 一个文本d 一个固定的类别集合C={c1,c2 ...

  7. centos7和centos6区别

    CentOS 7 vs CentOS 6的不同   (1)桌面系统[CentOS6] GNOME 2.x[CentOS7] GNOME 3.x(GNOME Shell) (2)文件系统[CentOS6 ...

  8. Python学习---重点模块之configparse

    configparse模块常用于生成和修改常见的配置文档 生成配置模块:用字典写 import configparser config = configparser.ConfigParser() co ...

  9. 数据结构之排序技术:快速排序、归并排序、堆排序(C++版)

    快速排序 #include <iostream> using namespace std; void swap(int num[], int i, int j) { int temp = ...

  10. My SQL 和SQL Server区别

    MySQL 与SQL Server区别 今天了解了二者区别,整理网上查阅资料,总结列举如下: MSSQL == SQL server 是sybase与微软合作时期的产物. 对于程序开发人员而言,目前使 ...