HDU 2509 Nim博弈变形
1、HDU 2509
2、题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败。
3、总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客。 传送门
首先给出结论:先手胜当且仅当(1)所有堆石子数都为1且游戏的SG值为0,(2)存在某堆石子数大于1且游戏的SG值不为0。
证明:
(1)若所有堆石子数都为1且SG值为0,则共有偶数堆石子,故先手胜。
(2) i)只有一堆石子数大于1时,我们总可以对该堆石子操作,使操作后石子堆数为奇数且所有堆得石子数均为1 ii)有超过一堆石子数大于1时,先手将SG值变为0即可,且总还存在某堆石子数大于1。因而,先手胜。
#include<bits/stdc++.h>
#define F(i,a,b) for (int i=a;i<b;i++)
#define FF(i,a,b) for (int i=a;i<=b;i++)
#define mes(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int N=; int main()
{
int n,a[];
while(~scanf("%d",&n)) {
int ans=,flag=;
F(i,,n) {
scanf("%d",&a[i]);
ans^=a[i];
if(a[i]>) flag=;
}
if(!flag) {
if(ans) puts("No");
else puts("Yes");
} else {
if(ans) puts("Yes");
else puts("No");
}
} return ;
}
HDU 2509 Nim博弈变形的更多相关文章
- HDU 1907 Nim博弈变形
1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...
- HDU 3032 (Nim博弈变形) Nim or not Nim?
博弈的题目,打表找规律还是相当有用的一个技巧. 这个游戏在原始的Nim游戏基础上又新加了一个操作,就是游戏者可以将一堆分成两堆. 这个SG函数值是多少并不明显,还是用记忆化搜索的方式打个表,规律就相当 ...
- HDU 3389 (Nim博弈变形) Game
参考了众巨巨的博客,现在重新整理一下自己的思路. 首先在纸上画了一下转移图: 1 3 4号盒子是不能够再转移卡片到其他盒子中去了的,其他盒子中的卡片经过若干步的转移最终也一定会转移到1 3 4号盒子中 ...
- HDU 2509 nim博弈
Be the Winner Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- HDU 4315 阶梯博弈变形
n个棋子,其中第k个是红色的,每个棋子只能往上爬,而且不能越过.重叠其他棋子,谁将红色棋子移到顶部谁赢. 由于只能往上爬,所以很像阶梯博弈.这题有2个限制,棋子不能重叠,有红棋存在 首先不考虑红色棋, ...
- hdu 1730 Nim博弈
题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1730 Nim博弈为:n堆石子,每个人可以在任意一堆中取任意数量的石子 n个数异或值为0就后手赢,否则先 ...
- HDU 3389 阶梯博弈变形
n堆石子,每次选取两堆a!=b,(a+b)%2=1 && a!=b && 3|a+b,不能操作者输 选石子堆为奇数的等价于选取步数为奇数的,观察发现 1 3 4 是无法 ...
- HDU - 1850 Nim博弈
思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...
- hdu 1907(Nim博弈)
John Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submis ...
随机推荐
- ArrayList和HashSet的Contains()方法(转)
来源: ArrayList和HashSet的Contains()方法 笔试题: package com.champion.test.exam; import java.util.ArrayList; ...
- angularjs向后台传递数据,与后端进行交互
angularjs之数据交互 function loadLeftFirstNodes (){ $http.get(sourceUrl,{ params:{ mpId: mpId, visits: ce ...
- cd命令
[cd] 切换目录 cd===>change directory 命令功能 : 切换目录到dirname 命令实例: 实例1:切换到跟目录下 命令: cd / 输出: ...
- 下载旧版本的NDK
在官网找不到旧版本的下载地址,只能取巧了. 写该随笔的时候,NDK最新的版本是r12,见 https://developer.android.com/ndk/downloads/index.html# ...
- 表现层的设计(二)——MVC如何处理复杂的界面元素
需求描述 一个比较复杂的页面,界面中包含的元素数据来自于许多个有关联或者无关联的表,然后我们要做的就是将数据呈现在界面上. 10年前大概都是这么干的 直接写一个复杂的SQL语句,返回一个包含所需数据的 ...
- LeetCode 204 Count Primes
Problem: Count the number of prime numbers less than a non-negative number, n. Summary: 判断小于某非负数n的质数 ...
- 解决绝对定位div position: absolute 后面的<a> Link不能点击
今天布局的时候,遇到一个bug,当DIV设置为绝对定位时,这个div后面的相对定位的层里面的<a>Link标签无法点击. 网上的解决方案是在绝对定位层里面添加:pointer-events ...
- 401 - 未授权:由于凭据无效,访问被拒绝”在iis的解决办法
1.打开"IIS信息服务管理器"-->选择你发布的网站-->选择功能视图中的"身份验证"-->右键匿名身份验证,选择"编辑" ...
- python中的collections
python中有大量的内置模块,很多是属于特定开发的功能性模块,但collections是属于对基础数据的类型的补充模块,因此,在日常代码中使用频率更高一些,值得做个笔记,本文只做主要关键字介绍,详细 ...
- 通过JSch编写上传、下载文件
package com.hct.util; /** * @作者: HCT * @时间:2016年12月29日下午3:13:20 * @描述: * */ import java.io.*; import ...