d(x)表示x的约数个数,让你求(l,r<=10^12,r-l<=10^6,k<=10^7)

#include<cstdio>
using namespace std;
#define MOD 998244353ll
#define MAXP 1000100
typedef long long ll;
ll x,y;
int T,K;
bool isNotPrime[MAXP+10];
int num_prime,prime[MAXP+10];
void shai()
{
for(long i = 2 ; i < MAXP ; i ++)
{
if(! isNotPrime[i])
prime[num_prime ++]=i;
for(long j = 0 ; j < num_prime && i * prime[j] < MAXP ; j ++)
{
isNotPrime[i * prime[j]] = 1;
if( !(i % prime[j]))
break;
}
}
}
ll b[1000010],a[1000010];
int main(){
scanf("%d",&T);
shai();
for(;T;--T){
scanf("%lld%lld%d",&x,&y,&K);
for(ll i=x;i<=y;++i){
a[i-x+1ll]=i;
b[i-x+1ll]=1;
}
for(int i=0;i<num_prime;++i){
ll t=x/(ll)prime[i]*(ll)prime[i]+(ll)(x%(ll)prime[i]!=0)*(ll)prime[i];
for(ll j=t;j<=y;j+=(ll)prime[i]){
int cnt=0;
while(a[j-x+1ll]%(ll)prime[i]==0){
a[j-x+1ll]/=(ll)prime[i];
++cnt;
}
b[j-x+1ll]=(b[j-x+1ll]*(((ll)cnt*(ll)K%MOD+1ll)%MOD))%MOD;
}
}
ll ans=0;
for(ll i=x;i<=y;++i){
if((a[i-x+1ll]>1ll)){
b[i-x+1ll]=(b[i-x+1ll]*((ll)K+1ll))%MOD;
}
ans=(ans+b[i-x+1ll])%MOD;
}
printf("%lld\n",ans);
}
return 0;
}

【线性筛】【质因数分解】【约数个数定理】hdu6069 Counting Divisors的更多相关文章

  1. 【线性筛】【筛法求素数】【约数个数定理】URAL - 2070 - Interesting Numbers

    素数必然符合题意. 对于合数,如若它是某个素数x的k次方(k为某个素数y减去1),一定不符合题意.只需找出这些数. 由约数个数定理,其他合数一定符合题意. 就从小到大枚举素数,然后把它的素数-1次方都 ...

  2. 【搜索】【约数个数定理】[HAOI2007]反素数ant

    对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的 ...

  3. hdu1492(约数个数定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...

  4. 【FZYZOJ】数论课堂 题解(约数个数定理)

    前言:想了两个小时orz,最后才想到要用约数个数定理…… ------------- 题目大意: 给定$n,q,A[1],A[2],A[3]$ 现有$A[i]=(A[i-1]+A[i-2]+A[i-3 ...

  5. hdu6069 Counting Divisors 晒区间素数

    /** 题目:hdu6069 Counting Divisors 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意:求[l,r]内所有数的k次方 ...

  6. HDU6069:Counting Divisors(因子数统计|区间筛)

    题意 计算\(\sum_{i=l}^kd(i^k)(d_i代表i的因子数)\) 分析 比赛搞了3个小时都没搞出来,有两个思维上的trick 1.要先遍历素数,再遍历[L,R],而不是枚举每个数,然后对 ...

  7. 2017 Multi-University Training Contest - Team 4 hdu6069 Counting Divisors

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6069 题目: Counting Divisors Time Limit: 10000/5000 ...

  8. 【区间筛】2017多校训练四 HDU6069 Counting Divisors

    http://acm.hdu.edu.cn/showproblem.php?pid=6069 [题意] 给定l,r,k,求 d(n)是n的因子个数 [思路] [Accepted] #include&l ...

  9. 2017 Multi-University Training Contest - Team 4——HDU6069&&Counting Divisors

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题目意思:首先解释一下d[n]这个函数表示n有多少个因子,百度一下可以知道这个函数是一个非完全积 ...

随机推荐

  1. HDU 1465 不容易系列之一 (错排公式+容斥)

    题目链接 Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好"一件"事情尚且不易,若想永远成功而总从不失败,那更是难上 ...

  2. springmvc4处理get和post请求中文乱码问题

    1.在springmvc4处理get和post请求的问题 参看大牛博客连接:https://blog.csdn.net/qq_41665356/article/details/80234392

  3. position的用法与心得

    position的四个属性值: relative absolute fixed static 为了便于理解,首先创建对应的div <div class="main"> ...

  4. python中正则用法举例

    一.根据正则表达式替换字符串 import re text='abc123' text=re.sub(r'\d','-',text) print(text) 输出:abc---将每个数字替换为-,如果 ...

  5. 集合框架源码学习之ArrayList

    目录: 0-0-1. 前言 0-0-2. 集合框架知识回顾 0-0-3. ArrayList简介 0-0-4. ArrayList核心源码 0-0-5. ArrayList源码剖析 0-0-6. Ar ...

  6. js中的return

    retrun true: 返回正确的处理结果. return false:分会错误的处理结果,终止处理. return:把控制权返回给页面(如果条件满足,后面的逻辑就不执行了). if(this.in ...

  7. linux命令行todo列表管理工具Taskwarrior介绍

    Taskwarrior 是一款在命令行下使用的TODO列表管理工具,或者说任务管理工具,灵活,快速,高效. 安装 在ubuntu 14.04 中,可从官方仓库安装task软件包 sudo apt-ge ...

  8. monkey测试===Android测试工具Monkey用法简介(转载)

    Monkey是Android中的一个命令行工具,可以运行在模拟器里或实际设备中.它向系统发送伪随机的用户事件流(如按键输入.触摸屏输入.手势输入等),实现对正在开发的应用程序进行压力测试.Monkey ...

  9. Linux下通过jstat命令查看jvm的GC情况

    jstat命令可以查看堆内存各部分的使用量,以及加载类的数量.命令的格式如下: jstat [-命令选项] [vmid] [间隔时间/毫秒] [查询次数]  注意!!!:使用的jdk版本是jdk8. ...

  10. [How to]Cloudera manager 离线安装手册

    2016-01-1910:54:05  增加kafka 1.简介 本文介绍在离线环境下安装Cloudera manager和简单使用方法 2.环境 OS:CentOS 6.7 Cloudera man ...