【线性筛】【质因数分解】【约数个数定理】hdu6069 Counting Divisors
d(x)表示x的约数个数,让你求
(l,r<=10^12,r-l<=10^6,k<=10^7)

#include<cstdio>
using namespace std;
#define MOD 998244353ll
#define MAXP 1000100
typedef long long ll;
ll x,y;
int T,K;
bool isNotPrime[MAXP+10];
int num_prime,prime[MAXP+10];
void shai()
{
for(long i = 2 ; i < MAXP ; i ++)
{
if(! isNotPrime[i])
prime[num_prime ++]=i;
for(long j = 0 ; j < num_prime && i * prime[j] < MAXP ; j ++)
{
isNotPrime[i * prime[j]] = 1;
if( !(i % prime[j]))
break;
}
}
}
ll b[1000010],a[1000010];
int main(){
scanf("%d",&T);
shai();
for(;T;--T){
scanf("%lld%lld%d",&x,&y,&K);
for(ll i=x;i<=y;++i){
a[i-x+1ll]=i;
b[i-x+1ll]=1;
}
for(int i=0;i<num_prime;++i){
ll t=x/(ll)prime[i]*(ll)prime[i]+(ll)(x%(ll)prime[i]!=0)*(ll)prime[i];
for(ll j=t;j<=y;j+=(ll)prime[i]){
int cnt=0;
while(a[j-x+1ll]%(ll)prime[i]==0){
a[j-x+1ll]/=(ll)prime[i];
++cnt;
}
b[j-x+1ll]=(b[j-x+1ll]*(((ll)cnt*(ll)K%MOD+1ll)%MOD))%MOD;
}
}
ll ans=0;
for(ll i=x;i<=y;++i){
if((a[i-x+1ll]>1ll)){
b[i-x+1ll]=(b[i-x+1ll]*((ll)K+1ll))%MOD;
}
ans=(ans+b[i-x+1ll])%MOD;
}
printf("%lld\n",ans);
}
return 0;
}
【线性筛】【质因数分解】【约数个数定理】hdu6069 Counting Divisors的更多相关文章
- 【线性筛】【筛法求素数】【约数个数定理】URAL - 2070 - Interesting Numbers
素数必然符合题意. 对于合数,如若它是某个素数x的k次方(k为某个素数y减去1),一定不符合题意.只需找出这些数. 由约数个数定理,其他合数一定符合题意. 就从小到大枚举素数,然后把它的素数-1次方都 ...
- 【搜索】【约数个数定理】[HAOI2007]反素数ant
对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的 ...
- hdu1492(约数个数定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...
- 【FZYZOJ】数论课堂 题解(约数个数定理)
前言:想了两个小时orz,最后才想到要用约数个数定理…… ------------- 题目大意: 给定$n,q,A[1],A[2],A[3]$ 现有$A[i]=(A[i-1]+A[i-2]+A[i-3 ...
- hdu6069 Counting Divisors 晒区间素数
/** 题目:hdu6069 Counting Divisors 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意:求[l,r]内所有数的k次方 ...
- HDU6069:Counting Divisors(因子数统计|区间筛)
题意 计算\(\sum_{i=l}^kd(i^k)(d_i代表i的因子数)\) 分析 比赛搞了3个小时都没搞出来,有两个思维上的trick 1.要先遍历素数,再遍历[L,R],而不是枚举每个数,然后对 ...
- 2017 Multi-University Training Contest - Team 4 hdu6069 Counting Divisors
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6069 题目: Counting Divisors Time Limit: 10000/5000 ...
- 【区间筛】2017多校训练四 HDU6069 Counting Divisors
http://acm.hdu.edu.cn/showproblem.php?pid=6069 [题意] 给定l,r,k,求 d(n)是n的因子个数 [思路] [Accepted] #include&l ...
- 2017 Multi-University Training Contest - Team 4——HDU6069&&Counting Divisors
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题目意思:首先解释一下d[n]这个函数表示n有多少个因子,百度一下可以知道这个函数是一个非完全积 ...
随机推荐
- CRB and Candies(组合数学+求逆元+lcm)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5407 题目: Problem Description CRB has N different cand ...
- Warning: File upload error - unable to create a temporary file in Unknown on line 0
upload_tmp_dir 临时文件夹问题 上传文件提示 Warning: File upload error - unable to create a temporary file in Unkn ...
- js_时间戳和时间格式之间的转换。
关于我的理解,简单明了点: 时间戳:把一个日期使用一个数字表示出来,这个数字就是这个日期的秒数. 日期:就是我们常见的时间表现形式. 时间戳对于一般看时间不够直观明了,可是在程序的世界里作用可大了. ...
- hdu 2795 Billboard(线段树+单点更新)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 Billboard Time Limit: 20000/8000 MS (Java/Others ...
- Android中自定义属性attr.xml的格式详解
1. reference:参考某一资源ID. (1)属性定义: <declare-styleable name = "名称"> ...
- Java垃圾收集算法
算法名称 过程 优缺点 1. 标记-清除算法 (Mark-Sweep) 分为两个阶段: 1.首先标记出所有需要回收的对象: 2.在标记完成后统一回收所有被标记的对象. 缺点: 1.效率问题:标记和清除 ...
- make command explaination 編譯命令解釋
Creating .config file make ARCH=arm CROSS_COMPILE=arm-none-eabi- stm32_defconfig 以上命令是 將變數 ARCH=arm, ...
- 蓝屏代码0X0000007B可能是SATA mode问题
Win7蓝屏代码0X0000007B可能是硬盘模式的问题,我进入BIOS把SATA的mode从Enhanced改为Compatible(及IDE兼容模式)结果系统可以顺利启动没有问题. 从 ...
- HDU 5129 Yong Zheng's Death
题目链接:HDU-5129 题目大意为给一堆字符串,问由任意两个字符串的前缀子串(注意断句)能组成多少种不同的字符串. 思路是先用总方案数减去重复的方案数. 考虑对于一个字符串S,如图,假设S1,S2 ...
- 构造函数、原型对象prototype、实例、隐式原型__proto__的理解
(欢迎一起探讨,如果有什么地方写的不准确或是不正确也欢迎大家指出来~) PS: 内容中的__proto__可能会被markdown语法导致显示为proto. 建议将构造函数中的方法都定义到构造函数的原 ...