[NOIp2017提高组]列队
[NOIp2017提高组]列队
题目大意
一个\(n\times m(n,m\le3\times10^5)\)的方阵,每个格子里的人都有一个编号。初始时第\(i\)行第\(j\)列的编号为\((i-1)*m+j\)。
\(q(q\le3\times10^5)\)次事件,每次在\((x,y)\)位置上的人离队。剩下的人向左、向前填补空位,然后离队的人在\((n,m)\)处归队。
求每次离队事件中的人的编号。
思路:
对于每一行\(1\sim m-1\)列建一棵线段树,对于最后一列也建一棵线段树。开同样数量的vector。
\((x,y)\)离队时,在第\(x\)棵线段树上找到第\(y\)个未移动的值在vector中的位置,再从最后一列的线段树中找到第\(x\)个未移动的值加入第\(x\)个vector末尾,最后将答案加入最后一列对应vector末尾即可。
时间复杂度\(\mathcal O(q\log n)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<vector>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
using int64=long long;
constexpr int N=3e5+2,SIZE=1e7;
int n,m,q,lim;
std::vector<int64> v[N];
class SegmentTree {
#define mid ((b+e)>>1)
private:
struct Node {
int val,left,right;
};
Node node[SIZE];
int sz,new_node() {
return ++sz;
}
public:
int root[N];
void modify(int &p,const int &b,const int &e,const int &x) {
p=p?:new_node();
node[p].val++;
if(b==e) return;
if(x<=mid) modify(node[p].left,b,mid,x);
if(x>mid) modify(node[p].right,mid+1,e,x);
}
int query(const int &p,const int &b,const int &e,const int &k) {
if(b==e) return b;
const int tmp=mid-b+1-node[node[p].left].val;
return k<=tmp?query(node[p].left,b,mid,k):query(node[p].right,mid+1,e,k-tmp);
}
#undef mid
};
SegmentTree t;
int64 del2(const int &x,const int64 &y) {
const int tmp=t.query(t.root[n+1],1,lim,x);
t.modify(t.root[n+1],1,lim,tmp);
const int64 ans=tmp<=n?(int64)tmp*m:v[n+1][tmp-n-1];
v[n+1].emplace_back(y?:ans);
return ans;
}
int64 del1(const int &x,const int &y) {
const int tmp=t.query(t.root[x],1,lim,y);
t.modify(t.root[x],1,lim,tmp);
const int64 ans=tmp<m?(int64)(x-1)*m+tmp:v[x][tmp-m];
v[x].emplace_back(del2(x,ans));
return ans;
}
int main() {
n=getint(),m=getint(),q=getint();
lim=std::max(n,m)+q;
for(register int i=0;i<q;i++) {
const int x=getint(),y=getint();
printf("%lld\n",y==m?del2(x,0):del1(x,y));
}
return 0;
}
[NOIp2017提高组]列队的更多相关文章
- [NOIP2017 提高组] 列队
考虑我们需要维护的是这样一个东西. 即可能变化的只有每一行前\(m - 1\)个,和最后一列. 我们考虑对每一行开一个权值线段树,记录原本序列的第\(x\)个是否被一出,且用一个\(vector\)记 ...
- 【题解】NOIP2017 提高组 简要题解
[题解]NOIP2017 提高组 简要题解 小凯的疑惑(数论) 不讲 时间复杂度 大力模拟 奶酪 并查集模板题 宝藏 最优解一定存在一种构造方法是按照深度一步步生成所有的联通性. 枚举一个根,随后设\ ...
- JZOJ 5196. 【NOIP2017提高组模拟7.3】B
5196. [NOIP2017提高组模拟7.3]B Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits Goto Pro ...
- JZOJ 5197. 【NOIP2017提高组模拟7.3】C
5197. [NOIP2017提高组模拟7.3]C Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits Goto Pro ...
- JZOJ 5195. 【NOIP2017提高组模拟7.3】A
5195. [NOIP2017提高组模拟7.3]A Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits Goto Pro ...
- JZOJ 5184. 【NOIP2017提高组模拟6.29】Gift
5184. [NOIP2017提高组模拟6.29]Gift (Standard IO) Time Limits: 1000 ms Memory Limits: 262144 KB Detailed ...
- JZOJ 5185. 【NOIP2017提高组模拟6.30】tty's sequence
5185. [NOIP2017提高组模拟6.30]tty's sequence (Standard IO) Time Limits: 1000 ms Memory Limits: 262144 KB ...
- NOIP2017提高组 模拟赛15(总结)
NOIP2017提高组 模拟赛15(总结) 第一题 讨厌整除的小明 [题目描述] 小明作为一个数学迷,总会出于数字的一些性质喜欢上某个数字,然而当他喜欢数字k的时候,却十分讨厌那些能够整除k而比k小的 ...
- NOIP2017提高组 模拟赛13(总结)
NOIP2017提高组 模拟赛13(总结) 第一题 函数 [题目描述] [输入格式] 三个整数. 1≤t<10^9+7,2≤l≤r≤5*10^6 [输出格式] 一个整数. [输出样例] 2 2 ...
随机推荐
- wait与waitpid
1. 函数原型: #include <sys/wait.h> pid_t wait(int *statloc); pid_t waitpid(pid_t pid, int *statloc ...
- 源码分析之tinyhttpd-0.1
1. 简介: tinyhttpd是使用c语言开发的超轻量级http服务器,通过代码流程可以了解http服务器的基本处理流程, 并且涉及了网络套接字,线程,父子进程,管道等等知识点: 项目地址:http ...
- 安全测试===Web 安全渗透方面的学习路线
作者:向生李链接:https://www.zhihu.com/question/21914899/answer/39344435来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...
- pandas+sqlalchemy 保存数据到mysql
import pandas as pd from sqlalchemy import create_engine data3={"lsit1":[1,2],"lsit2& ...
- Makefile系列之四 :条件判断
一.示例 下面的例子,判断$(CC)变量是否“gcc”,如果是的话,则使用GNU函数编译目标. libs_for_gcc = -lgnu normal_libs = foo: $(objects) i ...
- vsftpd 虚拟用户配置
vsftpd 虚拟用户的作用是 通过不同的虚拟用户可以有不同的根目录. 从 2.3.5 版本之后,vsftpd增强了安全检查,如果用户被限定在了其主目录下,则该用户的主目录不能在具有写权限了,如果检查 ...
- eetcode 之String to Integer (atoi)(28)
字符串转为数字,细节题.要考虑空格.正负号,当转化的数字超过最大或最小是怎么办. int atoi(char *str) { int len = strlen(str); ; ; ; while (s ...
- POJ-2398
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4243 Accepted: 2517 Descr ...
- Developer Express控件gridcontrol中gridView的某一个单元格是否可以自由输入
场景:在Developer Express控件gridcontrol中的gridView中,当医生开的临时医嘱的医嘱类型为"中草药","计价总量"单元格不可以自 ...
- 玩转RaspberryPi
step1:烧制树莓派内存卡 可以用[Linux系统烧制]http://www.williamsang.com/archives/1764.html 如果用windows烧制的话,就用Win32 Di ...