有一张很大的表:TRLOG
该表大概有2T左右
TRLOG:
CREATE TABLE TRLOG
(PLATFORM string,
USER_ID int,
CLICK_TIME string,
CLICK_URL string)
row format delimited
fields terminated by '\t';

数据:
PLATFORM USER_ID CLICK_TIME CLICK_URL
WEB 12332321 2013-03-21 13:48:31.324 /home/
WEB 12332321 2013-03-21 13:48:32.954 /selectcat/er/
WEB 12332321 2013-03-21 13:48:46.365 /er/viewad/12.html
WEB 12332321 2013-03-21 13:48:53.651 /er/viewad/13.html
WEB 12332321 2013-03-21 13:49:13.435 /er/viewad/24.html
WEB 12332321 2013-03-21 13:49:35.876 /selectcat/che/
WEB 12332321 2013-03-21 13:49:56.398 /che/viewad/93.html
WEB 12332321 2013-03-21 13:50:03.143 /che/viewad/10.html
WEB 12332321 2013-03-21 13:50:34.265 /home/
WAP 32483923 2013-03-21 23:58:41.123 /m/home/
WAP 32483923 2013-03-21 23:59:16.123 /m/selectcat/fang/
WAP 32483923 2013-03-21 23:59:45.123 /m/fang/33.html
WAP 32483923 2013-03-22 00:00:23.984 /m/fang/54.html
WAP 32483923 2013-03-22 00:00:54.043 /m/selectcat/er/
WAP 32483923 2013-03-22 00:01:16.576 /m/er/49.html
…… …… …… ……

需要把上述数据处理为如下结构的表ALLOG:
CREATE TABLE ALLOG
(PLATFORM string,
USER_ID int,
SEQ int,
FROM_URL string,
TO_URL string)
row format delimited
fields terminated by '\t';

整理后的数据结构:
PLATFORM USER_ID SEQ FROM_URL TO_URL
WEB 12332321 1 NULL /home/
WEB 12332321 2 /home/ /selectcat/er/
WEB 12332321 3 /selectcat/er/ /er/viewad/12.html
WEB 12332321 4 /er/viewad/12.html /er/viewad/13.html
WEB 12332321 5 /er/viewad/13.html /er/viewad/24.html
WEB 12332321 6 /er/viewad/24.html /selectcat/che/
WEB 12332321 7 /selectcat/che/ /che/viewad/93.html
WEB 12332321 8 /che/viewad/93.html /che/viewad/10.html
WEB 12332321 9 /che/viewad/10.html /home/
WAP 32483923 1 NULL /m/home/
WAP 32483923 2 /m/home/ /m/selectcat/fang/
WAP 32483923 3 /m/selectcat/fang/ /m/fang/33.html
WAP 32483923 4 /m/fang/33.html /m/fang/54.html
WAP 32483923 5 /m/fang/54.html /m/selectcat/er/
WAP 32483923 6 /m/selectcat/er/ /m/er/49.html
…… …… …… ……
PLATFORM和USER_ID还是代表平台和用户ID;SEQ字段代表用户按时间排序后的访问顺序,FROM_URL和TO_URL分别代表用户从哪一页跳转到哪一页。对于某个平台上某个用户的第一条访问记录,其FROM_URL是NULL(空值)。

面试官说需要用两种办法做出来:
1、实现一个能加速上述处理过程的Hive Generic UDF,并给出使用此UDF实现ETL过程的Hive SQL

2、实现基于纯Hive SQL的ETL过程,从TRLOG表生成ALLOG表;(结果是一套SQL)

答案:

1.

UDF

  1. package org.apache.hadoop.hive.udf;
  2. public class RowNumber extends org.apache.hadoop.hive.ql.exec.UDF {
  3. private static int MAX_VALUE = 50;
  4. private static String comparedColumn[] = new String[MAX_VALUE];
  5. private static int rowNum = 1;
  6. public int evaluate(Object... args) {
  7. String columnValue[] = new String[args.length];
  8. for (int i = 0; i < args.length; i++)
  9. columnValue[i] = args[i].toString();
  10. if (rowNum == 1)
  11. {
  12. for (int i = 0; i < columnValue.length; i++)
  13. comparedColumn[i] = columnValue[i];
  14. }
  15. for (int i = 0; i < columnValue.length; i++)
  16. {
  17. if (!comparedColumn[i].equals(columnValue[i]))
  18. {
  19. for (int j = 0; j < columnValue.length; j++)
  20. {
  21. comparedColumn[j] = columnValue[j];
  22. }
  23. rowNum = 1;
  24. return rowNum++;
  25. }
  26. }
  27. return rowNum++;
  28. }
  29. public static void main(String[] args) {
  30. RowNumber aRowNumber = new RowNumber();
  31. System.out.println(aRowNumber.evaluate("12332321"));
  32. System.out.println(aRowNumber.evaluate("12332321"));
  33. System.out.println(aRowNumber.evaluate("12332321"));
  34. System.out.println(aRowNumber.evaluate("12332321"));
  35. System.out.println(aRowNumber.evaluate("12332321"));
  36. }
  37. }

INSERT OVERWRITE TABLE ALLOG
SELECT t1.platform,t1.user_id,RowNumber(t1.user_id)seq,t2.click_url FROM_URL,t1.click_url TO_URL FROM
(select *,RowNumber(user_id)seq from trlog)t1
LEFT OUTER JOIN
(select *,RowNumber(user_id)seq from trlog)t2
on t1.user_id = t2.user_id and t1.seq=t2.seq+1;

2.

INSERT OVERWRITE TABLE ALLOG
SELECT t1.platform,t1.user_id,t1.seq,t2.click_url FROM_URL,t1.click_url TO_URL FROM
(SELECT platform,user_id,click_time,click_url,count(1) seq FROM (SELECT a.*,b.click_time click_time1,b.click_url click_url2  FROM trlog a left outer join trlog b on a.user_id = b.user_id)t WHERE click_time>=click_time1 GROUP BY platform,user_id,click_time,click_url)t1
LEFT OUTER JOIN
(SELECT platform,user_id,click_time,click_url,count(1) seq FROM (SELECT a.*,b.click_time click_time1,b.click_url click_url2  FROM trlog a left outer join trlog b on a.user_id = b.user_id)t WHERE click_time>=click_time1 GROUP BY platform,user_id,click_time,click_url )t2 
on t1.user_id = t2.user_id and t1.seq = t2.seq + 1;

转:hive面试题的更多相关文章

  1. Hive 笔试题

    Hive 笔试题 考试时间: 姓名:____________ 考试成绩:____________ 考试时长:180 分钟 注意事项: 1. 自主答题,不能参考任何除本试卷外的其它资料. 2. 总成绩共 ...

  2. hive面试题(免费拿走不谢)

    Hive 最常见的几个面试题 1.hive 的使用, 内外部表的区别,分区作用, UDF 和 Hive 优化(1)hive 使用:仓库.工具(2)hive 内部表:加载数据到 hive 所在的 hdf ...

  3. hive面试题

    1. Hive数据倾斜原因: key分布不均匀 业务数据本身的特性 SQL语句造成数据倾斜解决方法hive设置hive.map.aggr=true和hive.groupby.skewindata=tr ...

  4. hive 面试题 转载

    转自:http://blog.csdn.net/ningguixin/article/details/12852051 有一张很大的表:TRLOG该表大概有2T左右TRLOG:CREATE TABLE ...

  5. 一道hive面试题:explode map字段

    需要找到每个学生最好的课程和成绩,最差的课程和成绩,以及各科的平均分 文本数据如下: name scores张三 语文:,数学:,英语:,历史:,政治:,物理:,化学:,地理:,生物: 李四 语文:, ...

  6. hive 面试题

    使用 Hive或者自定义 MR 实现如下逻辑 product_no lac_id moment start_time user_id county_id staytime city_id 134291 ...

  7. Hive面试题整理(一)

    1.Hive表关联查询,如何解决数据倾斜的问题?(☆☆☆☆☆)   1)倾斜原因:map输出数据按key Hash的分配到reduce中,由于key分布不均匀.业务数据本身的特.建表时考虑不周.等原因 ...

  8. 一道hive面试题(窗口函数)

    表student中的数据格式如下: name month degree s1 201801 As1 201802 As1 201803 Cs1 201804 As1 201805 As1 201806 ...

  9. Hive面试题——累计求和

    需求: 有如下访客访问次数统计表 t_access_times 访客 月份 访问次数 A 2015-01 5 A 2015-01 15 B 2015-01 5 A 2015-01 8 B 2015-0 ...

随机推荐

  1. 基础篇:6.3)形位公差-标注 Mark

    本章目的:了解形位公差是如何标注的,及其意义: 1.形位公差框格 Feature Control Frames 2.被测要素的标注(两国标准不同) 2.1 中国GB标准 — 形位公差框格通过用带箭头的 ...

  2. django 中的聚合和分组 F查询 Q查询 事务cookies和sessions 066

    1 聚合和分组 聚合:对一些数据进行整理分析 进而得到结果(mysql中的聚合函数) 1aggregate(*args,**kwargs) : 通过对QuerySet进行计算 ,返回一个聚合值的字典. ...

  3. C 和 C++ 字符串函数操作

    1)字符串操作  strcpy(p, p1) 复制字符串 strncpy(p, p1, n) 复制指定长度字符串 strcat(p, p1) 附加字符串 strncat(p, p1, n) 附加指定长 ...

  4. Django Rest Framework(阿奇)

    Django Rest Framework 一. 什么是RESTful REST与技术无关,代表的是一种软件架构风格,REST是Representational State Transfer的简称,中 ...

  5. PHP输出毫秒时间戳

    代码: <?php list($msec, $sec) = explode(' ', microtime()); $msectime = (float)sprintf('%.0f', (floa ...

  6. overload_protect_config.txt

    overload_protection_switch=Y reject_uri_list= reject_request_percent=50 period_time=10 period_max_fa ...

  7. TomCat端口被占用问题

    TomCat在使用时,有时会爆出端口被占用的问题 解决方法: 1.快捷键win+R,输入cmd,点击回车后再输入netstat -ano|findstr 8005 注:什么端口被占用就输入什么端口号 ...

  8. 简说LINUX 下chmod|chown|chgrp和用法和区别

    1.chgrp(改变文件所属用户组) chgrp 用户组    文件名    ###就是这个格了.如果整个目录下的都改,则加-R参数用于递归. 如:chgrp  -R    user  smb.con ...

  9. 04-oracle时间函数

    add_months(sysdate,x)x月之后的日期:last_day(sysdate)指定日期所在月份的最后一天:next_day(sysdate,'星期x')当前日期后的下一个星期x: mon ...

  10. Unity中利用委托与监听解耦合的思路

    这篇随笔是一篇记录性的随笔,记录了从http://www.sikiedu.com/my/course/304,这门课程中学到的内容,附带了一些自己的思考. 一.单例模式的应用 首先假想一种情况,现在需 ...