Trucking

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2216    Accepted Submission(s): 757

Problem Description
A certain local trucking company would like to transport some goods on a cargo truck from one place to another. It is desirable to transport as much goods as possible each trip. Unfortunately, one cannot always use the roads in the shortest route: some roads may have obstacles (e.g. bridge overpass, tunnels) which limit heights of the goods transported. Therefore, the company would like to transport as much as possible each trip, and then choose the shortest route that can be used to transport that amount.

For the given cargo truck, maximizing the height of the goods transported is equivalent to maximizing the amount of goods transported. For safety reasons, there is a certain height limit for the cargo truck which cannot be exceeded.

 
Input
The input consists of a number of cases. Each case starts with two integers, separated by a space, on a line. These two integers are the number of cities (C) and the number of roads (R). There are at most 1000 cities, numbered from 1. This is followed by R lines each containing the city numbers of the cities connected by that road, the maximum height allowed on that road, and the length of that road. The maximum height for each road is a positive integer, except that a height of -1 indicates that there is no height limit on that road. The length of each road is a positive integer at most 1000. Every road can be travelled in both directions, and there is at most one road connecting each distinct pair of cities. Finally, the last line of each case consists of the start and end city numbers, as well as the height limit (a positive integer) of the cargo truck. The input terminates when C = R = 0.
 
Output
For each case, print the case number followed by the maximum height of the cargo truck allowed and the length of the shortest route. Use the format as shown in the sample output. If it is not possible to reach the end city from the start city, print "cannot reach destination" after the case number. Print a blank line between the output of the cases.
Sample Input
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 10
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 4
3 1
1 2 -1 100
1 3 10
0 0
0 0
Sample Output

Case 1:
maximum height = 7
length of shortest route = 20

Case 2:
maximum height = 4
length of shortest route = 8

Case 3:
cannot reach destination

题意:给定一个无向图,每条边有长度,通过最大高度两个权值,求解从起点到终点的能通过的最大高度以及在此高度上的最短路径长度

思路:二分搜索,每次进行一次最短路算法Dijkstra,路径更新公式需要添加   map[i][v].h>=p||map[i][v].h==-1

需要注意最后一行不能输出\n  PE了两次

 #include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
#define Max 1005
#define INF 9999999
struct node
{
int len,h;
}map[Max][Max];
bool vis[Max];
int dis[Max];
int c,r;
int s,e,height; bool Dijkstra(int p)
{
int i,j;
memset(vis,,sizeof(vis));
for(i=;i<=c;i++)
dis[i]=INF;
dis[s]=;
while(true)
{
int v=;
for(i=;i<=c;i++)
{
if(!vis[i]&&(v==||dis[i]<dis[v]))
v=i;
}
if(v==)
break;
vis[v]=;
//cout<<v<<endl;
// cout<<"3 "<<dis[3]<<endl;
for(i=;i<=c;i++)
{
if(vis[i]==&&(map[i][v].h>=p||map[i][v].h==-)&&(dis[v]+map[i][v].len<dis[i]))
dis[i]=dis[v]+map[i][v].len;
}
}
return dis[e]!=INF;
} int main()
{
int i,j;
int a,b;
int t=;
freopen("in.txt","r",stdin);
while(scanf("%d%d",&c,&r))
{
if(c==&&r==)
break;
for(i=;i<=c;i++)
for(j=;j<=c;j++)
{
map[i][j].h=;
map[i][j].len=INF;
}
for(i=;i<r;i++)
{
scanf("%d%d",&a,&b);
scanf("%d%d",&map[a][b].h,&map[a][b].len);
map[b][a].h=map[a][b].h;
map[b][a].len=map[a][b].len;
}
scanf("%d%d%d",&s,&e,&height);
int lb=,rb=height+,mid,ans,length=INF;
while(rb-lb>)
{
mid=(rb+lb)/;
if(Dijkstra(mid))
{
length=dis[e];
ans=mid;
lb=mid;
}
else
rb=mid;
}
if(t!=)
printf("\n");
if(length==INF)
printf("Case %d:\ncannot reach destination\n",t++);
else
{
printf("Case %d:\n",t++);
printf("maximum height = %d\n",ans);
printf("length of shortest route = %d\n",length);
}
}
}

Trucking(HDU 2962 最短路+二分搜索)的更多相关文章

  1. Day4 - I - Trucking HDU - 2962

    A certain local trucking company would like to transport some goods on a cargo truck from one place ...

  2. hdu 2962 最短路+二分

    题意:最短路上有一条高度限制,给起点和最大高度,求满足高度最大情况下,最短路的距离 不明白为什么枚举所有高度就不对 #include<cstdio> #include<cstring ...

  3. ACM: HDU 2544 最短路-Dijkstra算法

    HDU 2544最短路 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Descrip ...

  4. UESTC 30 &&HDU 2544最短路【Floyd求解裸题】

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. hdu 5521 最短路

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  6. HDU - 2544最短路 (dijkstra算法)

    HDU - 2544最短路 Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以 ...

  7. hdu 2962 Trucking (二分+最短路Spfa)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS (Java/Others ...

  8. hdu 2962 Trucking (最短路径)

    Trucking Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. HDU - 2962 Trucking SPFA+二分

    Trucking A certain local trucking company would like to transport some goods on a cargo truck from o ...

随机推荐

  1. 《VIM-Adventures攻略》前言

    本文已转至http://cn.abnerchou.me/2014/03/02/bfdaadb0/ 自从有了计算机,人们就想向其灌输自己的想法. 要想对其输入,自然离不开文本编辑器. 公告:<VI ...

  2. qt实现头像上传功能(写了4个类,朝十晚八的博客,非常好)

    想必大家都使用过qt的自定义头像功能吧,那么图1应该不会陌生,本片文章我就是要模拟一个这样的功能,虽然没有这么强大的效果,但是能够满足一定的需求. 图1 qq上传图片 首先在讲解功能之前,我先给出一片 ...

  3. b/s客户端和服务器的交互(转)

    原文:http://igoro.com/archive/what-really-happens-when-you-navigate-to-a-url/ 作为一个软件开发者,你一定会对网络应用如何工作有 ...

  4. [置顶] tar命令-linux

    tar命令 先对文件进行打包,然后进行压缩. [.tar..gz..tar.gz..tgz..bz2..tar.bz2..Z..tar.Z..zip..rar] [主要讲tar,其他还有zip/unz ...

  5. 【转】linux下tty,控制台,虚拟终端,串口,console(控制台终端)详解----不错

    原文网址:http://blog.csdn.net/liaoxinmeng/article/details/5004743 首先: 1.终端和控制台都不是个人电脑的概念,而是多人共用的小型中型大型计算 ...

  6. c#秒转时分秒

          2个办法 @{             int hour = item.track / 3600;             int min = (item.track - hour * 3 ...

  7. C 编程调试集

    gcc rw.c rw.c:75:6: warning: conflicting types for ‘process_conn_server’ void process_conn_server(in ...

  8. [置顶] 【cocos2d-x入门实战】微信飞机大战之十三:游戏场景过渡

    原创作品,转载请标明:http://blog.csdn.net/jackystudio/article/details/12082043 游戏是实现了,但是如果有个欢迎界面和一个结束界面就更好了. 欢 ...

  9. 【Java】在JTable中设置鼠标监听器,点击操作对应数据

    最终效果 鼠标点击JTable中任一数据,修改相应的信息. 确定点击的行和列 package com.dao; import java.awt.event.MouseAdapter; import j ...

  10. Django架设blog步骤

    @import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css);@import url(/c ...