Trucking

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2216    Accepted Submission(s): 757

Problem Description
A certain local trucking company would like to transport some goods on a cargo truck from one place to another. It is desirable to transport as much goods as possible each trip. Unfortunately, one cannot always use the roads in the shortest route: some roads may have obstacles (e.g. bridge overpass, tunnels) which limit heights of the goods transported. Therefore, the company would like to transport as much as possible each trip, and then choose the shortest route that can be used to transport that amount.

For the given cargo truck, maximizing the height of the goods transported is equivalent to maximizing the amount of goods transported. For safety reasons, there is a certain height limit for the cargo truck which cannot be exceeded.

 
Input
The input consists of a number of cases. Each case starts with two integers, separated by a space, on a line. These two integers are the number of cities (C) and the number of roads (R). There are at most 1000 cities, numbered from 1. This is followed by R lines each containing the city numbers of the cities connected by that road, the maximum height allowed on that road, and the length of that road. The maximum height for each road is a positive integer, except that a height of -1 indicates that there is no height limit on that road. The length of each road is a positive integer at most 1000. Every road can be travelled in both directions, and there is at most one road connecting each distinct pair of cities. Finally, the last line of each case consists of the start and end city numbers, as well as the height limit (a positive integer) of the cargo truck. The input terminates when C = R = 0.
 
Output
For each case, print the case number followed by the maximum height of the cargo truck allowed and the length of the shortest route. Use the format as shown in the sample output. If it is not possible to reach the end city from the start city, print "cannot reach destination" after the case number. Print a blank line between the output of the cases.
Sample Input
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 10
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 4
3 1
1 2 -1 100
1 3 10
0 0
0 0
Sample Output

Case 1:
maximum height = 7
length of shortest route = 20

Case 2:
maximum height = 4
length of shortest route = 8

Case 3:
cannot reach destination

题意:给定一个无向图,每条边有长度,通过最大高度两个权值,求解从起点到终点的能通过的最大高度以及在此高度上的最短路径长度

思路:二分搜索,每次进行一次最短路算法Dijkstra,路径更新公式需要添加   map[i][v].h>=p||map[i][v].h==-1

需要注意最后一行不能输出\n  PE了两次

 #include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
#define Max 1005
#define INF 9999999
struct node
{
int len,h;
}map[Max][Max];
bool vis[Max];
int dis[Max];
int c,r;
int s,e,height; bool Dijkstra(int p)
{
int i,j;
memset(vis,,sizeof(vis));
for(i=;i<=c;i++)
dis[i]=INF;
dis[s]=;
while(true)
{
int v=;
for(i=;i<=c;i++)
{
if(!vis[i]&&(v==||dis[i]<dis[v]))
v=i;
}
if(v==)
break;
vis[v]=;
//cout<<v<<endl;
// cout<<"3 "<<dis[3]<<endl;
for(i=;i<=c;i++)
{
if(vis[i]==&&(map[i][v].h>=p||map[i][v].h==-)&&(dis[v]+map[i][v].len<dis[i]))
dis[i]=dis[v]+map[i][v].len;
}
}
return dis[e]!=INF;
} int main()
{
int i,j;
int a,b;
int t=;
freopen("in.txt","r",stdin);
while(scanf("%d%d",&c,&r))
{
if(c==&&r==)
break;
for(i=;i<=c;i++)
for(j=;j<=c;j++)
{
map[i][j].h=;
map[i][j].len=INF;
}
for(i=;i<r;i++)
{
scanf("%d%d",&a,&b);
scanf("%d%d",&map[a][b].h,&map[a][b].len);
map[b][a].h=map[a][b].h;
map[b][a].len=map[a][b].len;
}
scanf("%d%d%d",&s,&e,&height);
int lb=,rb=height+,mid,ans,length=INF;
while(rb-lb>)
{
mid=(rb+lb)/;
if(Dijkstra(mid))
{
length=dis[e];
ans=mid;
lb=mid;
}
else
rb=mid;
}
if(t!=)
printf("\n");
if(length==INF)
printf("Case %d:\ncannot reach destination\n",t++);
else
{
printf("Case %d:\n",t++);
printf("maximum height = %d\n",ans);
printf("length of shortest route = %d\n",length);
}
}
}

Trucking(HDU 2962 最短路+二分搜索)的更多相关文章

  1. Day4 - I - Trucking HDU - 2962

    A certain local trucking company would like to transport some goods on a cargo truck from one place ...

  2. hdu 2962 最短路+二分

    题意:最短路上有一条高度限制,给起点和最大高度,求满足高度最大情况下,最短路的距离 不明白为什么枚举所有高度就不对 #include<cstdio> #include<cstring ...

  3. ACM: HDU 2544 最短路-Dijkstra算法

    HDU 2544最短路 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Descrip ...

  4. UESTC 30 &&HDU 2544最短路【Floyd求解裸题】

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. hdu 5521 最短路

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  6. HDU - 2544最短路 (dijkstra算法)

    HDU - 2544最短路 Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以 ...

  7. hdu 2962 Trucking (二分+最短路Spfa)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS (Java/Others ...

  8. hdu 2962 Trucking (最短路径)

    Trucking Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. HDU - 2962 Trucking SPFA+二分

    Trucking A certain local trucking company would like to transport some goods on a cargo truck from o ...

随机推荐

  1. While reading XXX pngcrush caught libpng error: N

    错误一:   While reading /XXX/XXX/XXX/img1.png pngcrush caught libpng error:   Not a PNG filCould not fi ...

  2. github三大步骤

    1)git init : 初始化当前目录,把这个目录变成Git可以管理的目录 2)git add [文件名称]:  把文件添加到仓库 3)git commit -m "对当前提交文件的描述& ...

  3. sql中update,alter,modify,delete,drop的区别和使用(整理)(转)

    关于update和alter: 百度知道上关于update和alter有一个很形象的总结: 一个表有很多字段,一个字段里有很多数据. 一个家有很多房间,一个房间里有很多家具. update是用来将衣柜 ...

  4. BZOJ1532: [POI2005]Kos-Dicing

    1532: [POI2005]Kos-Dicing Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1060  Solved: 321[Submit][St ...

  5. Linux系统下C++开发工具-远程终端软件使用

    通过前面安装Linux系统介绍,紧接着进入搭建Linux开发环境的第二步,选择C++开发工具,以及必要的客户端软件.从而完整的搭建一个Linux下C++开发的环境,便于初学者在该环境下能够很好的学习. ...

  6. java开发经验分享(二)

    二. 数据库 1. SQL语句中保留字.函数名要大写,表明.字段名全部小写 如:SELECT vc_name,vc_sex,i_age FROM user WHERE i_id = 100 AND i ...

  7. Windows系统结构

    四种用户模式进程:1.系统支持进程,比如登录进程和会话管理器,并不是Windows服务,不有服务控制管理器启动2.服务进程,一些以Windows服务方式来运行的组件3.用户应用进程4.环境子系统服务器 ...

  8. 马士兵 Servlet_JSP(2) JSP源代码)

    1.最简单的JSP HelloWorld.jsp <html>     <head>         <title>Hello</title>     ...

  9. 集成Dubbo服务(Spring)

    Dubbo是什么? Dubbo是阿里巴巴SOA服务化治理方案的核心框架,每天为2,000+个服务提供3,000,000,000+次访问量支持,并被广泛应用于阿里巴巴集团的各成员站点. Dubbo[]是 ...

  10. JS时间操作

    /** * 判断年份是否为润年 * * @param {Number} year */ function isLeapYear(year) { return (year % 400 == 0) || ...