Trucking

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2216    Accepted Submission(s): 757

Problem Description
A certain local trucking company would like to transport some goods on a cargo truck from one place to another. It is desirable to transport as much goods as possible each trip. Unfortunately, one cannot always use the roads in the shortest route: some roads may have obstacles (e.g. bridge overpass, tunnels) which limit heights of the goods transported. Therefore, the company would like to transport as much as possible each trip, and then choose the shortest route that can be used to transport that amount.

For the given cargo truck, maximizing the height of the goods transported is equivalent to maximizing the amount of goods transported. For safety reasons, there is a certain height limit for the cargo truck which cannot be exceeded.

 
Input
The input consists of a number of cases. Each case starts with two integers, separated by a space, on a line. These two integers are the number of cities (C) and the number of roads (R). There are at most 1000 cities, numbered from 1. This is followed by R lines each containing the city numbers of the cities connected by that road, the maximum height allowed on that road, and the length of that road. The maximum height for each road is a positive integer, except that a height of -1 indicates that there is no height limit on that road. The length of each road is a positive integer at most 1000. Every road can be travelled in both directions, and there is at most one road connecting each distinct pair of cities. Finally, the last line of each case consists of the start and end city numbers, as well as the height limit (a positive integer) of the cargo truck. The input terminates when C = R = 0.
 
Output
For each case, print the case number followed by the maximum height of the cargo truck allowed and the length of the shortest route. Use the format as shown in the sample output. If it is not possible to reach the end city from the start city, print "cannot reach destination" after the case number. Print a blank line between the output of the cases.
Sample Input
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 10
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 4
3 1
1 2 -1 100
1 3 10
0 0
0 0
Sample Output

Case 1:
maximum height = 7
length of shortest route = 20

Case 2:
maximum height = 4
length of shortest route = 8

Case 3:
cannot reach destination

题意:给定一个无向图,每条边有长度,通过最大高度两个权值,求解从起点到终点的能通过的最大高度以及在此高度上的最短路径长度

思路:二分搜索,每次进行一次最短路算法Dijkstra,路径更新公式需要添加   map[i][v].h>=p||map[i][v].h==-1

需要注意最后一行不能输出\n  PE了两次

 #include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
#define Max 1005
#define INF 9999999
struct node
{
int len,h;
}map[Max][Max];
bool vis[Max];
int dis[Max];
int c,r;
int s,e,height; bool Dijkstra(int p)
{
int i,j;
memset(vis,,sizeof(vis));
for(i=;i<=c;i++)
dis[i]=INF;
dis[s]=;
while(true)
{
int v=;
for(i=;i<=c;i++)
{
if(!vis[i]&&(v==||dis[i]<dis[v]))
v=i;
}
if(v==)
break;
vis[v]=;
//cout<<v<<endl;
// cout<<"3 "<<dis[3]<<endl;
for(i=;i<=c;i++)
{
if(vis[i]==&&(map[i][v].h>=p||map[i][v].h==-)&&(dis[v]+map[i][v].len<dis[i]))
dis[i]=dis[v]+map[i][v].len;
}
}
return dis[e]!=INF;
} int main()
{
int i,j;
int a,b;
int t=;
freopen("in.txt","r",stdin);
while(scanf("%d%d",&c,&r))
{
if(c==&&r==)
break;
for(i=;i<=c;i++)
for(j=;j<=c;j++)
{
map[i][j].h=;
map[i][j].len=INF;
}
for(i=;i<r;i++)
{
scanf("%d%d",&a,&b);
scanf("%d%d",&map[a][b].h,&map[a][b].len);
map[b][a].h=map[a][b].h;
map[b][a].len=map[a][b].len;
}
scanf("%d%d%d",&s,&e,&height);
int lb=,rb=height+,mid,ans,length=INF;
while(rb-lb>)
{
mid=(rb+lb)/;
if(Dijkstra(mid))
{
length=dis[e];
ans=mid;
lb=mid;
}
else
rb=mid;
}
if(t!=)
printf("\n");
if(length==INF)
printf("Case %d:\ncannot reach destination\n",t++);
else
{
printf("Case %d:\n",t++);
printf("maximum height = %d\n",ans);
printf("length of shortest route = %d\n",length);
}
}
}

Trucking(HDU 2962 最短路+二分搜索)的更多相关文章

  1. Day4 - I - Trucking HDU - 2962

    A certain local trucking company would like to transport some goods on a cargo truck from one place ...

  2. hdu 2962 最短路+二分

    题意:最短路上有一条高度限制,给起点和最大高度,求满足高度最大情况下,最短路的距离 不明白为什么枚举所有高度就不对 #include<cstdio> #include<cstring ...

  3. ACM: HDU 2544 最短路-Dijkstra算法

    HDU 2544最短路 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Descrip ...

  4. UESTC 30 &&HDU 2544最短路【Floyd求解裸题】

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. hdu 5521 最短路

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  6. HDU - 2544最短路 (dijkstra算法)

    HDU - 2544最短路 Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以 ...

  7. hdu 2962 Trucking (二分+最短路Spfa)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS (Java/Others ...

  8. hdu 2962 Trucking (最短路径)

    Trucking Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. HDU - 2962 Trucking SPFA+二分

    Trucking A certain local trucking company would like to transport some goods on a cargo truck from o ...

随机推荐

  1. iOS App 自定义 URL Scheme 设计(转自COCOACHINA)

    在 iOS 里,程序之间都是相互隔离,目前并没有一个有效的方式来做程序间通信,幸好 iOS 程序可以很方便的注册自己的 URL Scheme,这样就可以通过打开特定 URL 的方式来传递参数给另外一个 ...

  2. PSAM读卡芯片TDA8007BHL开发

    WWT:Work Waiting Time ATR:Answer To Reset,复位应答 etu =F/Df 1.     PSAM概述和应用 PSAM(PurchaseSecure Access ...

  3. Powershell 条件操作符

    Powershell 中的比较运算符-eq :等于-ne :不等于-gt :大于-ge :大于等于-lt :小于-le :小于等于-contains :包含-notcontains :不包含 进行比较 ...

  4. TestNG基本注解(注释)

    传统的方式来表示JUnit3中的测试方法是测试自己的名字前缀.标记一个类中的某些方法,具有特殊的意义,这是一个非常有效的方法,但命名不很好的扩展(如果我们想添加更多标签为不同的框架?),而非缺乏灵活性 ...

  5. T-SQL函数类别统计

  6. 前端HTML与CSS编码规范

    HTML 语法 HTML5 doctype 语言属性(Language attribute) 字符编码 IE 兼容模式 引入 CSS 和 JavaScript 文件 实用为王 属性顺序 布尔(bool ...

  7. 【hihoCoder第十六周】RMQ-ST算法

    RMQ的大裸题.没什么意思.开始数组开小了,RE了一次.下面放代码. #include <bits/stdc++.h> using namespace std; vector<int ...

  8. openstack组件手动部署整合

    preface:当你完全且正确的配置好整个OpenStack ENV 你将能看到的和体验到的!!! 我们先来看看简单效果吧,祝君能在这条路上走的更远,更好;

  9. WPF - Build Error总结

    1. are you missing an assembly reference 给项目添加新控件的时候,经常发现这种错误 Error 21 The type or namespace name 'C ...

  10. 传智播客 Html基础知识学习笔记2

    一.<select>标签 用来创建类似于WinForm中的ComboBox(下拉列表)或者LisBox 如果size大于1就是LisBox,否则就是ComboBox; <select ...