cf486B OR in Matrix
Let's define logical OR as an operation on two logical values (i. e. values that belong to the set {0, 1}) that is equal to 1 if either or both of the logical values is set to 1, otherwise it is 0. We can define logical OR of three or more logical values in the same manner:
where
is equal to 1 if some ai = 1, otherwise it is equal to 0.
Nam has a matrix A consisting of m rows and n columns. The rows are numbered from 1 to m, columns are numbered from 1 to n. Element at row i (1 ≤ i ≤ m) and column j (1 ≤ j ≤ n) is denoted as Aij. All elements of A are either 0 or 1. From matrix A, Nam creates another matrix B of the same size using formula:
.
(Bij is OR of all elements in row i and column j of matrix A)
Nam gives you matrix B and challenges you to guess matrix A. Although Nam is smart, he could probably make a mistake while calculating matrix B, since size of A can be large.
The first line contains two integer m and n (1 ≤ m, n ≤ 100), number of rows and number of columns of matrices respectively.
The next m lines each contain n integers separated by spaces describing rows of matrix B (each element of B is either 0 or 1).
In the first line, print "NO" if Nam has made a mistake when calculating B, otherwise print "YES". If the first line is "YES", then also print mrows consisting of n integers representing matrix A that can produce given matrix B. If there are several solutions print any one.
2 2
1 0
0 0
NO
2 3
1 1 1
1 1 1
YES
1 1 1
1 1 1
2 3
0 1 0
1 1 1
YES
0 0 0
0 1 0 题意是一个矩阵B的b[i][j]是所有A矩阵的a[i][k]和a[k][j]或起来的值,给一个B矩阵,问是否存在这样的A矩阵,并输出方案
因为是或……所以在B中出现的0必须在A中一横一竖都为0
所以先把B中0的情况搞完,然后判一下现在的B矩阵中1的位置对应的A的一行一列是否存在至少一个1
15分钟……有些慢了,你看卓神6分钟A掉
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define pi 3.1415926535897932384626433832795028841971
using namespace std;
int mat[110][110];
int a[110][110];
int n,m;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void ex()
{
printf("NO");
exit(0);
}
int main()
{
n=read();m=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
mat[i][j]=1;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
a[i][j]=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
int x=a[i][j];
if (!x)
{
for (int k=1;k<=n;k++)
mat[k][j]=0;
for (int k=1;k<=m;k++)
mat[i][k]=0;
}
}
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
if(a[i][j])
{
bool mrk=0;
for (int k=1;k<=n;k++)if (mat[k][j])mrk=1;
for (int k=1;k<=m;k++)if (mat[i][k])mrk=1;
if (!mrk)ex();
}
printf("YES\n");
for (int i=1;i<=n;i++)
{
for (int j=1;j<=m;j++)
printf("%d ",mat[i][j]);
printf("\n");
}
}
cf486B OR in Matrix的更多相关文章
- CF486B OR in Matrix(构造+思维)
CF486B 一道有趣的思维题 由于or的性质可知只要a[i][j]为1那么b中第i行,第j列将都变成1 相反的,如果b[i][j]是0那么a中第i行,第j列都必须是0 根据第二个性质我们可以构造出a ...
- angular2系列教程(十一)路由嵌套、路由生命周期、matrix URL notation
今天我们要讲的是ng2的路由的第二部分,包括路由嵌套.路由生命周期等知识点. 例子 例子仍然是上节课的例子:
- Pramp mock interview (4th practice): Matrix Spiral Print
March 16, 2016 Problem statement:Given a 2D array (matrix) named M, print all items of M in a spiral ...
- Atitit Data Matrix dm码的原理与特点
Atitit Data Matrix dm码的原理与特点 Datamatrix原名Datacode,由美国国际资料公司(International Data Matrix, 简称ID Matrix)于 ...
- Android笔记——Matrix
转自:http://www.cnblogs.com/qiengo/archive/2012/06/30/2570874.html#translate Matrix的数学原理 在Android中,如果你 ...
- 通过Matrix进行二维图形仿射变换
Affine Transformation是一种二维坐标到二维坐标之间的线性变换,保持二维图形的"平直性"和"平行性".仿射变换可以通过一系列的原子变换的复合来 ...
- [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素
Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...
- [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- [LeetCode] Search a 2D Matrix II 搜索一个二维矩阵之二
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...
随机推荐
- 【活动】明星衣橱CEO林清华聊创业 | 猎云网
[活动]明星衣橱CEO林清华聊创业 | 猎云网 [活动]明星衣橱CEO林清华聊创业
- 转:Excel转换XML工具<一>
http://blog.csdn.net/candle806/article/details/7441695最近在整理测试用例,所以想找一个合适的工具来完成对测试需求.测试用例的管理.对比了一翻,发现 ...
- NetAnalyzer笔记 之 四. C#版的抓包软件
[创建时间:2015-09-10 22:37:04] NetAnalyzer下载地址 不好意思啊,NetAnalyzer停更有点长了,今天继续填坑^&^ NetAnalyzer实现结构 在上一 ...
- hdu 2853
虚拟赛一开始lyf就对我说这是一道匹配的题目,我一看明显裸的最优匹配,敲完提交wrong, 题目要求改变尽量少的公司,就是如果遇到相等的权值,优先选择跟他原来匹配的,KM匹配是按序号大小来的,如果一个 ...
- jQuery插件开发 格式与解析
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给jQuery添加新的全局函数,相当于给jQuery类本身添加方法.jQuery的全局函数就是属于jQuery命名空间的函数,另一种是对象级 ...
- poj1014 Dividing (多重背包)
转载请注明出处:http://blog.csdn.net/u012860063 题目链接:id=1014">http://poj.org/problem?id=1014 Descrip ...
- Javascript进阶篇——(DOM—节点---插入、删除和替换元素、创建元素、创建文本节点)—笔记整理
插入节点appendChild()在指定节点的最后一个子节点列表之后添加一个新的子节点.语法: appendChild(newnode) //参数: //newnode:指定追加的节点. 为ul添加一 ...
- Winform改变Textbox边框颜色(转)
namespace MyTextBoxOne { //使用时必须把文本框的BorderStyle为FixedSingle才能使用 //一些控件(如TextBox.Button等)是由系统进程绘制,重载 ...
- Windows命令行(DOS命令)教程-7 (转载)http://arch.pconline.com.cn//pcedu/rookie/basic/10111/15325_6.html
11. deltree [功能] 删除目录树 [格式] [C:][path]DELTREE [C1:][path1] [[C2:][path2] […]] [说明] 这个命令将整个指定目录树全部消灭, ...
- Tomcat6+nginx集群,达到负载均衡和session复制
nginx+tomcat做web项目集群,达到负载均衡.故障转移.session复制功能. 1.nginx配置文件见上一篇“nginx配置文件(反向代理+集群+动静分离)” 2.tomcat集群,修改 ...