HDU3853-LOOPS(概率DP求期望)
LOOPS
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)
Total Submission(s): 1864 Accepted Submission(s): 732
Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.

The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the
right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)!
At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power
she need to escape from the LOOPS.
The following R lines, each contains C*3 real numbers, at 2 decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+1), grid (r+1,
c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by 4 spaces.
It is ensured that the sum of three numbers in each group is 1, and the second numbers of the rightmost groups are 0 (as there are no grids on the right of them) while the third numbers of the downmost groups are 0 (as there are no grids below them).
You may ignore the last three numbers of the input data. They are printed just for looking neat.
The answer is ensured no greater than 1000000.
Terminal at EOF
2 2
0.00 0.50 0.50 0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00
6.000
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
const int maxn = 1000+10;
const int dx[3] = {0,0,1};
const int dy[3] = {0,1,0};
const double eps = 1e-8;
double p[maxn][maxn][3];
int r,c;
double dp[maxn][maxn];
bool isok(int x,int y){
return x>=0&&x<r && y>=0&&y <c &&!(x==r-1&&y==c-1);
}
int main(){ while(~scanf("%d%d",&r,&c)){
for(int i = 0; i < r; i++){
for(int j = 0; j < c; j++){
for(int k = 0; k < 3; k++){
scanf("%lf",&p[i][j][k]);
}
}
}
dp[r-1][c-1] = 0.0;
for(int i = r-1; i >= 0; i--){
for(int j = c-1; j >= 0; j--){
double t = 2.0;
for(int k = 1; k < 3; k++){
int xx = i + dx[k];
int yy = j + dy[k];
if(isok(xx,yy)){
t += dp[xx][yy]*p[i][j][k];
}
}
if(fabs(1-p[i][j][0])<eps) dp[i][j] = 0;
else dp[i][j] = t/(1-p[i][j][0]); }
}
printf("%.3lf\n",dp[0][0]);
}
return 0;
}
HDU3853-LOOPS(概率DP求期望)的更多相关文章
- POJ2096 Collecting Bugs(概率DP,求期望)
Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...
- hdu3853 LOOPS(概率dp) 2016-05-26 17:37 89人阅读 评论(0) 收藏
LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others) Total Su ...
- [hdu3853]LOOPS(概率dp)
题意:迷宫是一个R*C的布局,每个格子中给出停留在原地,往右走一个,往下走一格的概率,起点在(1,1),终点在(R,C),每走一格消耗两点能量,求出最后所需要的能量期望. 解题关键:概率dp反向求期望 ...
- LightOJ 1030 【概率DP求期望】
借鉴自:https://www.cnblogs.com/keyboarder-zsq/p/6216762.html 题意:n个格子,每个格子有一个值.从1开始,每次扔6个面的骰子,扔出几点就往前几步, ...
- HDU-3853 LOOPS(概率DP求期望)
题目大意:在nxm的方格中,从(1,1)走到(n,m).每次只能在原地不动.向右走一格.向下走一格,概率分别为p1(i,j),p2(i,j),p3(i,j).求行走次数的期望. 题目分析:状态转移方程 ...
- HDU 3853 LOOP (概率DP求期望)
D - LOOPS Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit St ...
- HDU 4405 Aeroplane chess (概率DP求期望)
题意:有一个n个点的飞行棋,问从0点掷骰子(1~6)走到n点须要步数的期望 当中有m个跳跃a,b表示走到a点能够直接跳到b点. dp[ i ]表示从i点走到n点的期望,在正常情况下i点能够到走到i+1 ...
- HDU-4035 Maze (概率DP求期望)
题目大意:在一个树形迷宫中,以房间为节点.有n间房间,每间房间存在陷阱的概率为ki,存在出口的概率为ei,如果这两种情况都不存在(概率为pi),那么只能做出选择走向下一个房间(包括可能会走向上一个房间 ...
- HDU-4405 Aeroplane chess(概率DP求期望)
题目大意:一个跳棋游戏,每置一次骰子前进相应的步数.但是有的点可以不用置骰子直接前进,求置骰子次数的平均值. 题目分析:状态很容易定义:dp(i)表示在第 i 个点出发需要置骰子的次数平均值.则状态转 ...
随机推荐
- 在CMD命令行下关闭进程的命令
转载: [重要]在CMD命令行下关闭进程的命令━━━━━━━━━━━━━━━━━━━━━━━━━━ 方法一: 在"运行"中输入:ntsd -c q -pn 程序名字(在MS-Dos ...
- Spring Boot的启动器Starter详解
Spring Boot的启动器Starter详解 作者:chszs,未经博主允许不得转载.经许可的转载需注明作者和博客主页:http://blog.csdn.net/chszs Spring Boot ...
- RedHat Enterprise Linux 6.3 安装Oracle Database 11g
按照以下文章正确将oracle安装在linux上 http://yiyiboy2010.iteye.com/blog/1670795 http://mirrors.163.com/centos/6.5 ...
- Count the Colors(线段树,找颜色段条数)
Count the Colors Time Limit: 2 Seconds Memory Limit: 65536 KB Painting some colored segments on ...
- Problem 2128 最长子串(kmp+strstr好题经典)
Problem 2128 最长子串 Accept: 134 Submit: 523Time Limit: 3000 mSec Memory Limit : 65536 KB Probl ...
- arduino循迹小车
int MotorRight1=14; int MotorRight2=15; int MotorLeft1=16; int MotorLeft2=17; int MotorRPWM=3; int M ...
- cmd命令 拷贝某文件夹及其子文件夹文件到其它文件夹
@ECHO OFF cd/d %H:\FileLoc\CNET&cd.. ::echo 拷贝"%H:\FileLoc\CNET"中文件到"H:\FileLocTe ...
- tomcat中开启的对SSL(https)的支持
打开conf/server.xml会发现有下面一段配置被注释着: <!-- <Connector port="8443" protocol="HTTP/1.1 ...
- 【攻防实战】SQL注入演练!
这篇文章目的是让初学者利用SQL注入技术来解决他们面临的问题, 成功的使用它们,并在这种攻击中保护自己. 1.0 介绍 当一台机器只打开了80端口, 你最依赖的漏洞扫描器也不能返回任何有用的内容, 并 ...
- sql server 2008 设计时 不允许保存更改
什么 都不说了 上图