题目描述

求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之和。

输入

一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M

输出

T行 每行一个整数 表示第i组数据的结果

样例输入

4
2 4
3 3
6 5
8 3

样例输出

24
28
233
178


题解

莫比乌斯反演+线性筛

(为了方便,以下公式默认$n\le m$)

$\ \ \ \ \sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)\\=\sum\limits_{d=1}^n|\mu(d)|\sum\limits_{i=1}^n\sum\limits_{j=1}^m[gcd(i,j)=d]\frac{ij}d\\=\sum\limits_{d=1}^n|\mu(d)|\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}[gcd(i,j)=1]ijd\\=\sum\limits_{d=1}^nd|\mu(d)|\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}i\sum\limits_{j=1}^{\lfloor\frac md\rfloor}j\sum\limits_{p|gcd(i,j)}\mu(p)\\=\sum\limits_{d=1}^nd|\mu(d)|\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}\mu(p)\sum\limits_{i=1}^{\lfloor\frac n{dp}\rfloor}ip\sum\limits_{j=1}^{\lfloor\frac m{dp}\rfloor}jp\\=\sum\limits_{d=1}^nd|\mu(d)|\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}p^2\mu(p)s(\lfloor\frac n{dp}\rfloor)s(\lfloor\frac m{dp}\rfloor)$

其中$s(n)=\sum\limits_{i=1}^ni$

然后再令$D=dp$,可以得到:

$\ \ \ \ \sum\limits_{d=1}^nd|\mu(d)|\sum\limits_{p=1}^{\lfloor\frac nd\rfloor}p^2\mu(p)s(\lfloor\frac n{dp}\rfloor)s(\lfloor\frac m{dp}\rfloor)\\=\sum\limits_{D=1}^ns(\lfloor\frac nD\rfloor)s(\lfloor\frac mD\rfloor)\sum\limits_{p|D}p^2\mu(p)·\frac Dp|\mu(\frac Dp)|\\=\sum\limits_{D=1}^nD·s(\lfloor\frac nD\rfloor)·s(\lfloor\frac mD\rfloor)\sum\limits_{p|D}p·\mu(p)·|\mu(\frac Dp)|$

设后面的式子为$f(D)$,那么其为积性函数,因此可以快筛。具体方法:当$D$为质数时为$f(D)=1-D$,否则将$D$分解为$vp^a$,其中$p$为最小质因子。当$a\ge3$时$f(p^a)$一定等于0,否则直接计算即可。

之后求前缀和,分块处理即可。

时间复杂度$O(n+T\sqrt{n})=O(能过)$

其中本题的对$2^{30}$取模,可以直接自然溢出uint,然后最后的答案&$2^{30}-1$

#include <cstdio>
#include <algorithm>
#define N 4000010
#define k 4000000
using namespace std;
unsigned f[N] , prime[N] , tot , np[N] , sum[N];
inline unsigned s(unsigned n)
{
return n * (n + 1) / 2;
}
int main()
{
unsigned i , j , n , m , last , ans;
int T;
sum[1] = f[1] = 1;
for(i = 2 ; i <= k ; i ++ )
{
if(!np[i]) f[i] = 1 - i , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= k ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
if(i / prime[j] % prime[j] == 0) f[i * prime[j]] = 0;
else f[i * prime[j]] = -f[i / prime[j]] * prime[j];
break;
}
else f[i * prime[j]] = f[i] * f[prime[j]];
}
sum[i] = sum[i - 1] + f[i] * i;
}
scanf("%d" , &T);
while(T -- )
{
scanf("%u%u" , &n , &m) , ans = 0;
for(i = 1 ; i <= n && i <= m ; i = last + 1)
last = min(n / (n / i) , m / (m / i)) , ans += s(n / i) * s(m / i) * (sum[last] - sum[i - 1]);
printf("%u\n" , ans & ((1 << 30) - 1));
}
return 0;
}

【bzoj2694】Lcm 莫比乌斯反演+线性筛的更多相关文章

  1. BZOJ 2694: Lcm [莫比乌斯反演 线性筛]

    题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd( ...

  2. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  3. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  4. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  5. BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)

    一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...

  6. Luogu 4917 天守阁的地板(莫比乌斯反演+线性筛)

    既然已经学傻了,这个题当然是上反演辣. 对于求积的式子,考虑把[gcd=1]放到指数上.一通套路后可以得到∏D∏d∏i∏j (ijd2)μ(d) (D=1~n,d|D,i,j=1~n/D). 冷静分析 ...

  7. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  8. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  9. 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

随机推荐

  1. this指向问题(1)

    在JS中,this一般有四种绑定的方式,但是在确定到底是哪种绑定之前必须先找到函数的调用位置.接下来先介绍其中的三种: 1.默认绑定 其实所谓的默认绑定就是函数直接调用(前面没有什么东西来点它),在默 ...

  2. 修改第三方库内容,carsh提示"image not found"

    在图示位置把提示的东西加上即可 参考: iOS app with framework crashed on device, dyld: Library not loaded, Xcode 6 Beta ...

  3. 异构数据库迁移——DATAX

    背景 在最近接触到的一个case里面,需要把db2的数据迁移至oracle,客户可接收的停机时间为3小时. 同步方式的比较 一说到停机时间,大家第一时间想到Oracle公司的GoldenGate实时同 ...

  4. 4W条人才表循环处理业务sql优化过程

    场景: 使用windows服务定时更新合同数据:执行存储过程(pas_RefreshContractStatus),但存储过程里面有一个需要更新4W条人才表循环处理业务 问题: 循环更新4W条人才表状 ...

  5. 微信小程序真机定位问题技巧

    小程序导航 https://wq.xmaht.top 开发者在开发小程序的时候可能会碰到一些这样的问题: 问题1  开发者工具上看效果没问题,但是在真机上测试不行? 问题2  有用户遇到小程序功能无法 ...

  6. PHP的IMAP函数

    imap_8bit -转换的8位字符串的引用,打印字符串 imap_alerts -返回所有的I MAP邮件警报已经发生 imap_append -附加了一系列的信息到指定邮箱 imap_base64 ...

  7. PHP小练习题

    前几天在百度知道里面看到有位网友询问如何制作一下的小程序:用php语言设计一个小程序,计算今天到达下月的天数.全部输出这些天数,并使得每天的日期以三种颜色循环显示,设置三个表单,让用户选择字体颜色,然 ...

  8. Spark提交任务(Standalone和Yarn)

    Spark Standalone模式提交任务 Cluster模式: ./spark-submit  \--master spark://node01:7077  \--deploy-mode clus ...

  9. Small Talk Matters【闲谈很重要】

    Small Talk Matters We' ve all been there: in a lift, in line at the bank or on an airplane, 我们都有过这样的 ...

  10. ASCII码排序 南阳acm4

    ASCII码排序 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 输入三个字符(可以重复)后,按各字符的ASCII码从小到大的顺序输出这三个字符.   输入 第一行输 ...