昂贵的聘礼
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 33365   Accepted: 9500

Description

年轻的探险家来到了一个印第安部落里。在那里他和酋长的女儿相爱了,于是便向酋长去求亲。酋长要他用10000个金币作为聘礼才答应把女儿嫁给他。探险家拿不出这么多金币,便请求酋长降低要求。酋长说:"嗯,如果你能够替我弄到大祭司的皮袄,我可以只要8000金币。如果你能够弄来他的水晶球,那么只要5000金币就行了。"探险家就跑到大祭司那里,向他要求皮袄或水晶球,大祭司要他用金币来换,或者替他弄来其他的东西,他可以降低价格。探险家于是又跑到其他地方,其他人也提出了类似的要求,或者直接用金币换,或者找到其他东西就可以降低价格。不过探险家没必要用多样东西去换一样东西,因为不会得到更低的价格。探险家现在很需要你的帮忙,让他用最少的金币娶到自己的心上人。另外他要告诉你的是,在这个部落里,等级观念十分森严。地位差距超过一定限制的两个人之间不会进行任何形式的直接接触,包括交易。他是一个外来人,所以可以不受这些限制。但是如果他和某个地位较低的人进行了交易,地位较高的的人不会再和他交易,他们认为这样等于是间接接触,反过来也一样。因此你需要在考虑所有的情况以后给他提供一个最好的方案。 
为了方便起见,我们把所有的物品从1开始进行编号,酋长的允诺也看作一个物品,并且编号总是1。每个物品都有对应的价格P,主人的地位等级L,以及一系列的替代品Ti和该替代品所对应的"优惠"Vi。如果两人地位等级差距超过了M,就不能"间接交易"。你必须根据这些数据来计算出探险家最少需要多少金币才能娶到酋长的女儿。 

Input

输入第一行是两个整数M,N(1 <= N <= 100),依次表示地位等级差距限制和物品的总数。接下来按照编号从小到大依次给出了N个物品的描述。每个物品的描述开头是三个非负整数P、L、X(X < N),依次表示该物品的价格、主人的地位等级和替代品总数。接下来X行每行包括两个整数T和V,分别表示替代品的编号和"优惠价格"。

Output

输出最少需要的金币数。

Sample Input

1 4
10000 3 2
2 8000
3 5000
1000 2 1
4 200
3000 2 1
4 200
50 2 0

Sample Output

5250

Source

 //176K    0MS    C++    1381B    2013-11-22 12:07:24
/* 题意:中文.. 最短路径:
小变异..主要是构图和枚举等级不好想到,注意等级这一点,题目说得不是
很明确,等级低的不可以向等级高的交换,等级高的 在差别为m的情况下才能和等级低的交换 然后构好图后以虚构的0为起点,遍历n个点然后找到0到1的最短路即为答案 */
#include<stdio.h>
#include<string.h>
#define inf 0x7fffffff
int n,m;
int g[][];
int vis[],d[];
int lv[],num[];
int dij() //dij算法
{
for(int i=;i<=n;i++)
d[i]=g[][i];
for(int i=;i<=n;i++){
int v=;
int temp=inf;
for(int j=;j<=n;j++)
if(!vis[j] && d[j]<temp){
v=j;
temp=d[j];
}
if(v==) break;
vis[v]=;
for(int j=;j<=n;j++)
if(!vis[j] && g[v][j]!=inf && d[j]>d[v]+g[v][j])
d[j]=d[v]+g[v][j];
}
return d[];
}
int main(void)
{
int a,b;
while(scanf("%d%d",&m,&n)!=EOF)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
g[i][j]=inf;
for(int i=;i<=n;i++){
scanf("%d%d%d",&g[][i],&lv[i],&num[i]);
for(int j=;j<=num[i];j++){
scanf("%d%d",&a,&b);
g[a][i]=b; //逆向构图
}
}
int min=inf;
for(int i=;i<=n;i++){
int maxlv=lv[i];
for(int j=;j<=n;j++){
if(maxlv<lv[j] || maxlv-lv[j]>m) //等级枚举
vis[j]=;
else vis[j]=;
}
int temp=dij();
if(min>temp) min=temp;
}
printf("%d\n",min);
}
return ;
}

poj 1062 昂贵的聘礼 (最短路径)的更多相关文章

  1. POJ 1062 昂贵的聘礼(图论,最短路径)

    POJ 1062 昂贵的聘礼(图论,最短路径) Description 年轻的探险家来到了一个印第安部落里.在那里他和酋长的女儿相爱了,于是便向酋长去求亲.酋长要他用10000个金币作为聘礼才答应把女 ...

  2. 最短路(Dijkstra) POJ 1062 昂贵的聘礼

    题目传送门 /* 最短路:Dijkstra算法,首先依照等级差距枚举“删除”某些点,即used,然后分别从该点出发生成最短路 更新每个点的最短路的最小值 注意:国王的等级不一定是最高的:) */ #i ...

  3. poj 1062 昂贵的聘礼 (dijkstra最短路)

    题目链接:http://poj.org/problem?id=1062 昂贵的聘礼 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  4. POJ 1062 昂贵的聘礼

    C - 昂贵的聘礼 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit St ...

  5. 最短路POJ 1062 昂贵的聘礼

    C - 昂贵的聘礼 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit St ...

  6. POJ 1062 昂贵的聘礼(带限制条件的dijkstra)

    题目网址:http://poj.org/problem?id=1062 题目: 昂贵的聘礼 Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

  7. POJ 1062 昂贵的聘礼(最短路中等题)

    昂贵的聘礼 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 51879   Accepted: 15584 Descripti ...

  8. POJ -1062 昂贵的聘礼(前向星 &amp;&amp; SPFA)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u013497151/article/details/30299671 题目链接:id=1062&qu ...

  9. POJ 1062 昂贵的聘礼 (最短路)

    昂贵的聘礼 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/M Description 年轻的探险家来到了一个印第安部落里.在那里 ...

随机推荐

  1. spring-开发需要jar包

    需要的开发包 Spring核心开发包: Commons-logging.jar Spring-beans.jar Spring-context.jar Spring-core.jar Spring-e ...

  2. ethereum(以太坊)(十一)--字节数组(一)

    pragma solidity ^0.4.0; contract byte1{ /* 固定大小字节数组(Fixed-size byte arrays) 固定大小字节数组可以通过bytes1,bytes ...

  3. 学习Pytbon第十天 函数2 内置方法和匿名函数

    print( all([1,-5,3]) )#如果可迭代对象里所有元素都为真则返回真.0不为真print( any([1,2]) )#如果数据里面任意一个数据为真返回则为真a= ascii([1,2, ...

  4. perl实现监控linux

    1.使用root用户telnet进入linux系统 2.修改DNS以下两种方法 A.通过setup命令配置dns B.通过在/etc目录下创建resolv.conf文件 3.查看DNS是否配置成功 [ ...

  5. 15 Django组件-中间件

    中间件 中间件的概念 中间件顾名思义,是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出.因为改变的是全局,所以需要谨慎实用,用不好 ...

  6. 计算机指令集CISC与RISC

    当接触一新CPU时商家会首先描述它是RISC指令集,这意味着什么,从这个描述你能了解多少CPU特性信息? 复杂指令集计算机(CISC) 长期来,计算机性能的提高往往是通过增加硬件的复杂性来获得.随着集 ...

  7. 5.Mongodb聚合

    聚合 aggregate 聚合(aggregate)主要用于计算数据,类似sql中的sum().avg() 语法 db.集合名称.aggregate([{管道:{表达式}}]) 1.管道 管道在Uni ...

  8. laravel5.5契约

    无规矩不成方圆, Laravel 的契约是一组定义框架提供的核心服务的接口,规定了实现该接口的规范. 为什么要使用接口 首先,让我们来看一些高耦合缓存实现的代码.如下: <?php namesp ...

  9. USACO Section1.5 Prime Palindromes 解题报告

    pprime解题报告 —— icedream61 博客园(转载请注明出处)--------------------------------------------------------------- ...

  10. linux下多线程断点下载工具-axel

    今天要下载一下14G左右的文件,用wget约10小时,后来发现linux下有个多线程支持断点续传的下载工具axel,试了一下,下载速度大大增加. 包地址:http://pkgs.repoforge.o ...