Cleaning Shifts
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4245   Accepted: 1429

Description

Farmer John's cows, pampered since birth, have reached new heights of fastidiousness. They now require their barn to be immaculate. Farmer John, the most obliging of farmers, has no choice but hire some of the cows to clean the barn.

Farmer John has N (1 <= N <= 10,000) cows who are willing to do some cleaning. Because dust falls continuously, the cows require that the farm be continuously cleaned during the workday, which runs from second number M to second number E during the day (0 <= M <= E <= 86,399). Note that the total number of seconds during which cleaning is to take place is E-M+1. During any given second M..E, at least one cow must be cleaning.

Each cow has submitted a job application indicating her willingness to work during a certain interval T1..T2 (where M <= T1 <= T2 <= E) for a certain salary of S (where 0 <= S <= 500,000). Note that a cow who indicated the interval 10..20 would work for 11 seconds, not 10. Farmer John must either accept or reject each individual application; he may NOT ask a cow to work only a fraction of the time it indicated and receive a corresponding fraction of the salary.

Find a schedule in which every second of the workday is covered by at least one cow and which minimizes the total salary that goes to the cows.

Input

Line 1: Three space-separated integers: N, M, and E.

Lines 2..N+1: Line i+1 describes cow i's schedule with three space-separated integers: T1, T2, and S.

Output

Line 1: a single integer that is either the minimum total salary to get the barn cleaned or else -1 if it is impossible to clean the barn.

Sample Input

3 0 4
0 2 3
3 4 2
0 0 1

Sample Output

5

Hint

Explanation of the sample:

FJ has three cows, and the barn needs to be cleaned from second 0 to second 4. The first cow is willing to work during seconds 0, 1, and 2 for a total salary of 3, etc.

Farmer John can hire the first two cows.

Source

 

题意:给n个区间及其代价值,问要覆盖[M,E]区间至少要花费多少代价;

解法:这是一个dp问题,先列出方程。

F[i]表示取[0,i]这个区间的代价,初始化F[M-1]=0,答案就是F[E].

则方程为F[a[i].T2]=min(F[a[j].T2])+a[i].s (T1-1<=a[j].T2<T2),找min的过程用线段树实现。

将a[i]按T2从小到大排列,逐步更新最小值。

代码:

 #include"bits/stdc++.h"

 #define ll long long
#define vl vector<ll>
#define ci(x) scanf("%d",&x)
#define pi(x) printf("%d\n",x)
#define pl(x) printf("%lld\n",x)
#define rep(i, n) for(int i=0;i<n;i++)
using namespace std;
const int NN = 1e6 + ;
int n,s,t;
struct P{int x,y,s;};
P a[NN];
bool cmp(P a,P b){
return a.y<b.y;
}
const ll INF = 0x3fffffffffffffff;
struct SegMin {
int N;
vl is;vl mul;vl add;
ll init;
ll merge(ll a, ll b) {
return min(a, b);
}
void push(int o, int L, int R, ll m, ll a) {
is[o] = is[o] * m + a;
mul[o] = mul[o] * m;
add[o] = add[o] * m + a;
} SegMin(int n, ll init=INF) {
N = ;
while (N < n) N *= ;
this->init = init;
is = vl(N * , init);
mul = vl(N * , );
add = vl(N * );
} SegMin(vl a, ll init=INF) {
int n = a.size();
N = ;
while (N < n) N *= ;
this->init = init;
is = vl(N * );
mul = vl(N * , );
add = vl(N * );
copy(a.begin(), a.end(), is.begin() + N);
for (int i = N - ; i > ; i--) {
is[i] = merge(is[i << ], is[i << | ]);
}
} void update(int l, int r, ll m, ll a) {
if (l < r) update(, , N, l, r, m, a);
} void update(int o, int L, int R, int l, int r, ll m, ll a) {
if (l <= L && R <= r) {
push(o, L, R, m, a);
} else {
int M = (L + R) >> ;
push(o, L, M, R);
if (l < M) update(o << , L, M, l, r, m, a);
if (r > M) update(o << | , M, R, l, r, m, a);
is[o] = merge(is[o << ], is[o << | ]);
}
} void push(int o, int L, int M, int R) {
if (mul[o] != || add[o] != ) {
push(o << , L, M, mul[o], add[o]);
push(o << | , M, R, mul[o], add[o]);
mul[o] = ;
add[o] = ;
}
} ll query(int l, int r) {
if (l < r) return query(, , N, l, r);
return init;
} ll query(int o, int L, int R, int l, int r) {
if (l <= L && R <= r) {
return is[o];
} else {
int M = (L + R) >> ;
push(o, L, M, R);
ll res = init;
if (l < M) res = merge(res, query(o << , L, M, l, r));
if (r > M) res = merge(res, query(o << | , M, R, l, r));
is[o] = merge(is[o << ], is[o << | ]);
return res;
}
}
}; int main(){
ci(n),ci(s),ci(t);//s从1开始
s++,t++;
int ma=;
for(int i=;i<n;i++) ci(a[i].x),ci(a[i].y),ci(a[i].s);
for(int i=;i<n;i++) a[i].x++,a[i].y++,ma=max(ma,a[i].y);
sort(a,a+n,cmp);
SegMin seg(ma+);
seg.update(,ma+,,INF);
seg.update(,s,,); for(int i=;i<n;i++){
if(a[i].y<s) continue;
int L=a[i].x-,R=a[i].y;
ll res=seg.query(L,R)+a[i].s;
res=min(seg.query(R,R+),res);//与前面的最小值取min
seg.update(R,R+,,res);
}
ll ans=seg.query(t,ma+);
if(ans>=INF) puts("-1");//未覆盖到
else pl(ans);
return ;
}

POJ 3171 区间最小花费覆盖 (DP+线段树的更多相关文章

  1. cf834D(dp+线段树区间最值,区间更新)

    题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...

  2. POJ 2482 Stars in Your Window (线段树+扫描线+区间最值,思路太妙了)

    该题和 黑书 P102 采矿 类似 参考链接:http://blog.csdn.net/shiqi_614/article/details/7819232http://blog.csdn.net/ts ...

  3. HDU 3698 DP+线段树

    给出N*M矩阵.每一个点建立灯塔有花费.每一个点的灯塔有连接范围,求每一行都建立一个灯塔的最小花费,要求每相邻两行的灯塔能够互相连接.满足 |j-k|≤f(i,j)+f(i+1,k) DP思路,dp[ ...

  4. bzoj 1672: [Usaco2005 Dec]Cleaning Shifts 清理牛棚【dp+线段树】

    设f[i]为i时刻最小花费 把牛按l升序排列,每头牛能用f[l[i]-1]+c[i]更新(l[i],r[i])的区间min,所以用线段树维护f,用排完序的每头牛来更新,最后查询E点即可 #includ ...

  5. poj 3468 A Simple Problem with Integers 线段树第一次 + 讲解

    A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal w ...

  6. ZOJ 3349 Special Subsequence 简单DP + 线段树

    同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...

  7. POJ 3468_A Simple Problem with Integers(线段树)

    题意: 给定序列及操作,求区间和. 分析: 线段树,每个节点维护两个数据: 该区间每个元素所加的值 该区间元素和 可以分为"路过"该区间和"完全覆盖"该区间考虑 ...

  8. Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)

    Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...

  9. POJ 2828 Buy Tickets(排队问题,线段树应用)

    POJ 2828 Buy Tickets(排队问题,线段树应用) ACM 题目地址:POJ 2828 Buy Tickets 题意:  排队买票时候插队.  给出一些数对,分别代表某个人的想要插入的位 ...

随机推荐

  1. springmvc源码分析上之HandlerMapping

    现在企业开发中,必不可少的管理框架就是spring,而与之搭配的也是企业开发中用的最多的MVC框架:Springmvc 关于springmvc原理,请自行百度 HandlerMapping是sprin ...

  2. C#中关于静态与非静态的一个疑问

    关于静态方法.变量和非静态方法.变量的区别,园里的大神早就有了许多详细的总结,个人觉得静态方法.变量与非静态方法.变量的区别可以总结为以下两句话: 静态的是属于类的 非静态是属于对象的 就是说调用静态 ...

  3. 我对CSS选择器的认识

    我对CSS选择器的认识 一.简述 CSS选择器是对HTML元素进行选择的筛选条件,大概可以分为两类: 特征选择器——根据元素自身所具有的某种特征进行筛选,比如名称.ID.属性等: 关系选择器——根据元 ...

  4. iview 中 select 值不对

    <Select v-model="formValidate.departmentId" @on-change="selectDepartment"> ...

  5. 织梦上传webp格式图片

    织梦cms如何添加其他格式的图片呢? 这里以webp为类来实现一下如何让织梦支持webp 1.修改系统设置让织梦(dede)支持该图片格式,比如:webp(新图片格式) 系统->系统基本参数-& ...

  6. time和datetime模块

    在Python中,通常有这几种方式来表示时间: 1)时间戳 2)格式化的时间字符串  3)元组(struct_time)共九个元素. 由于Python的time模块实现主要调用C库,所以各个平台可能有 ...

  7. linux单机限速工具

    wondershaper是国外人开发的一款在Linux内核下基于TC工具的对整块网卡的限度工具. http://lartc.org/wondershaper/ 安装wondershaper: [roo ...

  8. 运用Hadoop能否搭建完整的云计算平台?

    Apache Hadoop 是一个用java语言实现的软件框架,在由大量计算机组成的集群中运行海量数据的分布式计算,它可以让应用程序支持上千个节点和PB级别的数据. Hadoop并不完全代表云计算,所 ...

  9. IOS 多线程-pthread

    #import <pthread.h> @interface HMViewController () - (IBAction)btnClick; @end @implementation ...

  10. Ajax(一):XHR的用法

    AJAX能够向服务器请求额外的数据而无须卸载页面,会带来更好的用户体验. 1.在使用xhr对象时,要调用都第一个方法就是open(),它接收3个参数:要发送的请求的类型(get,post等).请求的u ...