POJ 3171 区间最小花费覆盖 (DP+线段树
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 4245 | Accepted: 1429 |
Description
Farmer John has N (1 <= N <= 10,000) cows who are willing to do some cleaning. Because dust falls continuously, the cows require that the farm be continuously cleaned during the workday, which runs from second number M to second number E during the day (0 <= M <= E <= 86,399). Note that the total number of seconds during which cleaning is to take place is E-M+1. During any given second M..E, at least one cow must be cleaning.
Each cow has submitted a job application indicating her willingness to work during a certain interval T1..T2 (where M <= T1 <= T2 <= E) for a certain salary of S (where 0 <= S <= 500,000). Note that a cow who indicated the interval 10..20 would work for 11 seconds, not 10. Farmer John must either accept or reject each individual application; he may NOT ask a cow to work only a fraction of the time it indicated and receive a corresponding fraction of the salary.
Find a schedule in which every second of the workday is covered by at least one cow and which minimizes the total salary that goes to the cows.
Input
Lines 2..N+1: Line i+1 describes cow i's schedule with three space-separated integers: T1, T2, and S.
Output
Sample Input
3 0 4
0 2 3
3 4 2
0 0 1
Sample Output
5
Hint
FJ has three cows, and the barn needs to be cleaned from second 0 to second 4. The first cow is willing to work during seconds 0, 1, and 2 for a total salary of 3, etc.
Farmer John can hire the first two cows.
Source
题意:给n个区间及其代价值,问要覆盖[M,E]区间至少要花费多少代价;
解法:这是一个dp问题,先列出方程。
F[i]表示取[0,i]这个区间的代价,初始化F[M-1]=0,答案就是F[E].
则方程为F[a[i].T2]=min(F[a[j].T2])+a[i].s (T1-1<=a[j].T2<T2),找min的过程用线段树实现。
将a[i]按T2从小到大排列,逐步更新最小值。
代码:
#include"bits/stdc++.h" #define ll long long
#define vl vector<ll>
#define ci(x) scanf("%d",&x)
#define pi(x) printf("%d\n",x)
#define pl(x) printf("%lld\n",x)
#define rep(i, n) for(int i=0;i<n;i++)
using namespace std;
const int NN = 1e6 + ;
int n,s,t;
struct P{int x,y,s;};
P a[NN];
bool cmp(P a,P b){
return a.y<b.y;
}
const ll INF = 0x3fffffffffffffff;
struct SegMin {
int N;
vl is;vl mul;vl add;
ll init;
ll merge(ll a, ll b) {
return min(a, b);
}
void push(int o, int L, int R, ll m, ll a) {
is[o] = is[o] * m + a;
mul[o] = mul[o] * m;
add[o] = add[o] * m + a;
} SegMin(int n, ll init=INF) {
N = ;
while (N < n) N *= ;
this->init = init;
is = vl(N * , init);
mul = vl(N * , );
add = vl(N * );
} SegMin(vl a, ll init=INF) {
int n = a.size();
N = ;
while (N < n) N *= ;
this->init = init;
is = vl(N * );
mul = vl(N * , );
add = vl(N * );
copy(a.begin(), a.end(), is.begin() + N);
for (int i = N - ; i > ; i--) {
is[i] = merge(is[i << ], is[i << | ]);
}
} void update(int l, int r, ll m, ll a) {
if (l < r) update(, , N, l, r, m, a);
} void update(int o, int L, int R, int l, int r, ll m, ll a) {
if (l <= L && R <= r) {
push(o, L, R, m, a);
} else {
int M = (L + R) >> ;
push(o, L, M, R);
if (l < M) update(o << , L, M, l, r, m, a);
if (r > M) update(o << | , M, R, l, r, m, a);
is[o] = merge(is[o << ], is[o << | ]);
}
} void push(int o, int L, int M, int R) {
if (mul[o] != || add[o] != ) {
push(o << , L, M, mul[o], add[o]);
push(o << | , M, R, mul[o], add[o]);
mul[o] = ;
add[o] = ;
}
} ll query(int l, int r) {
if (l < r) return query(, , N, l, r);
return init;
} ll query(int o, int L, int R, int l, int r) {
if (l <= L && R <= r) {
return is[o];
} else {
int M = (L + R) >> ;
push(o, L, M, R);
ll res = init;
if (l < M) res = merge(res, query(o << , L, M, l, r));
if (r > M) res = merge(res, query(o << | , M, R, l, r));
is[o] = merge(is[o << ], is[o << | ]);
return res;
}
}
}; int main(){
ci(n),ci(s),ci(t);//s从1开始
s++,t++;
int ma=;
for(int i=;i<n;i++) ci(a[i].x),ci(a[i].y),ci(a[i].s);
for(int i=;i<n;i++) a[i].x++,a[i].y++,ma=max(ma,a[i].y);
sort(a,a+n,cmp);
SegMin seg(ma+);
seg.update(,ma+,,INF);
seg.update(,s,,); for(int i=;i<n;i++){
if(a[i].y<s) continue;
int L=a[i].x-,R=a[i].y;
ll res=seg.query(L,R)+a[i].s;
res=min(seg.query(R,R+),res);//与前面的最小值取min
seg.update(R,R+,,res);
}
ll ans=seg.query(t,ma+);
if(ans>=INF) puts("-1");//未覆盖到
else pl(ans);
return ;
}
POJ 3171 区间最小花费覆盖 (DP+线段树的更多相关文章
- cf834D(dp+线段树区间最值,区间更新)
题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...
- POJ 2482 Stars in Your Window (线段树+扫描线+区间最值,思路太妙了)
该题和 黑书 P102 采矿 类似 参考链接:http://blog.csdn.net/shiqi_614/article/details/7819232http://blog.csdn.net/ts ...
- HDU 3698 DP+线段树
给出N*M矩阵.每一个点建立灯塔有花费.每一个点的灯塔有连接范围,求每一行都建立一个灯塔的最小花费,要求每相邻两行的灯塔能够互相连接.满足 |j-k|≤f(i,j)+f(i+1,k) DP思路,dp[ ...
- bzoj 1672: [Usaco2005 Dec]Cleaning Shifts 清理牛棚【dp+线段树】
设f[i]为i时刻最小花费 把牛按l升序排列,每头牛能用f[l[i]-1]+c[i]更新(l[i],r[i])的区间min,所以用线段树维护f,用排完序的每头牛来更新,最后查询E点即可 #includ ...
- poj 3468 A Simple Problem with Integers 线段树第一次 + 讲解
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal w ...
- ZOJ 3349 Special Subsequence 简单DP + 线段树
同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...
- POJ 3468_A Simple Problem with Integers(线段树)
题意: 给定序列及操作,求区间和. 分析: 线段树,每个节点维护两个数据: 该区间每个元素所加的值 该区间元素和 可以分为"路过"该区间和"完全覆盖"该区间考虑 ...
- Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)
Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...
- POJ 2828 Buy Tickets(排队问题,线段树应用)
POJ 2828 Buy Tickets(排队问题,线段树应用) ACM 题目地址:POJ 2828 Buy Tickets 题意: 排队买票时候插队. 给出一些数对,分别代表某个人的想要插入的位 ...
随机推荐
- WinRAR(WinZip)压缩与解压实现(C#版Window平台)
本文的原理是借助Windows平台安装的WinRAR(WinZip)实现C#程序的调用(注:WinRAR压缩解压WinZip同样适用). 先来看WinRAR(WinZip)自身的支持调用命令: 压缩命 ...
- 在 Excel 中设置图片
package com.smbea.demo.excel; import java.awt.image.BufferedImage; import java.io.ByteArrayOutputStr ...
- bai_du 采集代码(已过期)
<?php $url = "http://www.baidu.com/s?wd=site:www.xxxxxx.com+inurl:hot&tn=baidulaonian&am ...
- [原创]Debian9 安装配置MariaDB
序言 这次玩次狠得.除了编译器使用yum安装,其他全部手动编译.哼~ 看似就Nginx.PHP.MySql三个东东,但是它们太尼玛依赖别人了. 没办法,想用它们就得老老实实给它们提供想要的东西. 首先 ...
- 为什么要使用TLSv1.2和System SSL?
FTP 和 Telnet 正是核心联网应用程序的两个示例.为 System SSL 编程接口编码的供应商应用程序可以通过更改代码来利用这些新支持. 这是安全套接层 (SSL) 协议的最新版本,也是最为 ...
- leetcode:栈
1. evaluate-reverse-polish-notation Evaluate the value of an arithmetic expression in Reverse Polish ...
- py常见模块
1.系统相关的信息模块: import sys sys.argv 是一个 list,包含所有的命令行参数. sys.stdout sys.stdin sys.stderr 分别表示标准输入输出,错误输 ...
- Selenium入门20 等待时间
自动化过程中有的页面元素加载慢或者需要等待特定条件执行后续步骤,此时需添加等待时间: 1 time.sleep() 固定等待时间,需import time 2 webdriver隐式等待 无需引入包 ...
- 创建一个gradle项目
1.创建项目 一定要选这个安装的路径 项目创建成功,修改build.gradle文件,主要是为了下载依赖的jar包,原始模板, 而我修改之后,如下 apply plugin: 'idea' apply ...
- 2018年第九届蓝桥杯【C++省赛B组】第二题 明码
汉字的字形存在于字库中,即便在今天,16点阵的字库也仍然使用广泛.16点阵的字库把每个汉字看成是16x16个像素信息.并把这些信息记录在字节中. 一个字节可以存储8位信息,用32个字节就可以存一个汉字 ...