拓扑排序/DP【洛谷P2883】 [USACO07MAR]牛交通Cow Traffic
P2883 [USACO07MAR]牛交通Cow Traffic
随着牛的数量增加,农场的道路的拥挤现象十分严重,特别是在每天晚上的挤奶时间。为了解决这个问题,FJ决定研究这个问题,以能找到导致拥堵现象的瓶颈所在。
牧场共有M条单向道路,每条道路连接着两个不同的交叉路口,为了方便研究,FJ将这些交叉路口编号为1..N,而牛圈位于交叉路口N。任意一条单向道路的方向一定是是从编号低的路口到编号高的路口,因此农场中不会有环型路径。同时,可能存在某两个交叉路口不止一条单向道路径连接的情况。
在挤奶时间到来的时候,奶牛们开始从各自的放牧地点回到牛圈。放牧地点是指那些没有道路连接进来的路口(入度为0的顶点)。
现在请你帮助fj通过计算从放牧点到达牛圈的路径数目来找到最繁忙的道路(答案保证是不超过32位整数)。
思维固化了。
看到这题直接套上P1685 游览的板子。
才得60分。
再读题(看题解),发现这题会有多个起点,多个终点。
那么对于多个终点,只能去n,所以还要从n建反边跑一边拓扑排序,这样一条边的贡献就是\(g(u)*f(v)\)。
好像我用了最笨的方法跑两边拓扑排序。
code:
#include <iostream>
#include <cstdio>
#include <queue>
using namespace std;
const int wx=500017;
inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
}
int n,m,ans;
int num,tot;
int g[wx],head[wx],h[wx],f[wx];
int in[wx],out[wx],in2[wx],out2[wx];
struct e{
int nxt,to;
}edge[wx*2];
void add(int from,int to){
edge[++num].nxt=head[from];
edge[num].to=to;
head[from]=num;
}
struct ee{
int nxt,to;
}e[wx*2];
void ADD(int from,int to){
e[++tot].nxt=h[from];
e[tot].to=to;
h[from]=tot;
}
queue<int > q;
void bfs1(){
for(int i=1;i<=n;i++)if(!in[i])g[i]=1,q.push(i);
while(q.size()){
int u=q.front(); q.pop();
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
g[v]+=g[u];
in[v]--;
if(!in[v]){
q.push(v);
}
}
}
}
void bfs2(){
for(int i=1;i<=n;i++)if(!in2[i])f[i]=1,q.push(i);
while(q.size()){
int u=q.front(); q.pop();
for(int i=h[u];i;i=e[i].nxt){
int v=e[i].to;
f[v]+=f[u];
in2[v]--;
if(!in2[v])q.push(v);
}
}
for(int u=1;u<=n;u++){
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
ans=max(ans,g[u]*f[v]);
}
}
}
int main(){
n=read(); m=read();
for(int i=1;i<=m;i++){
int x,y;
x=read(); y=read();
if(x>y)swap(x,y);
add(x,y); in[y]++; out[x]++;
ADD(y,x); in2[x]++; out2[y]++;
}
bfs1();
bfs2();
printf("%d\n",ans);
return 0;
}
拓扑排序/DP【洛谷P2883】 [USACO07MAR]牛交通Cow Traffic的更多相关文章
- bzoj1638 / P2883 [USACO07MAR]牛交通Cow Traffic
P2883 [USACO07MAR]牛交通Cow Traffic 对于每一条边$(u,v)$ 设入度为0的点到$u$有$f[u]$种走法 点$n$到$v$(通过反向边)有$f2[v]$种走法 显然经过 ...
- 洛谷P3045 [USACO12FEB]牛券Cow Coupons
P3045 [USACO12FEB]牛券Cow Coupons 71通过 248提交 题目提供者洛谷OnlineJudge 标签USACO2012云端 难度提高+/省选- 时空限制1s / 128MB ...
- 洛谷 P2419 [USACO08JAN]牛大赛Cow Contest
题目背景 [Usaco2008 Jan] 题目描述 N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a p ...
- 洛谷——P2952 [USACO09OPEN]牛线Cow Line
P2952 [USACO09OPEN]牛线Cow Line 题目描述 Farmer John's N cows (conveniently numbered 1..N) are forming a l ...
- 洛谷 P3014 [USACO11FEB]牛线Cow Line
P3014 [USACO11FEB]牛线Cow Line 题目背景 征求翻译.如果你能提供翻译或者题意简述,请直接发讨论,感谢你的贡献. 题目描述 The N (1 <= N <= 20) ...
- 洛谷 P3111 [USACO14DEC]牛慢跑Cow Jog_Sliver
P3111 [USACO14DEC]牛慢跑Cow Jog_Sliver 题目描述 The cows are out exercising their hooves again! There are N ...
- [洛谷P3014][USACO11FEB]牛线Cow Line (康托展开)(数论)
如果在阅读本文之前对于康托展开没有了解的同学请戳一下这里: 简陋的博客 百度百科 题目描述 N(1<=N<=20)头牛,编号为1...N,正在与FJ玩一个疯狂的游戏.奶牛会排成一行 ...
- 洛谷P3111 [USACO14DEC]牛慢跑Cow Jog_Sliver
传送门 题目大意:n头牛在单行道n个位置,开始用不同的速度跑步. 当后面的牛追上前面的牛,后面的牛会和前面的牛以一样的速度 跑,称为一个小团体.问:ts后有多少个小团体. 题解:模拟 倒着扫一遍,因为 ...
- 洛谷—— P2419 [USACO08JAN]牛大赛Cow Contest
https://www.luogu.org/problem/show?pid=2419 题目背景 [Usaco2008 Jan] 题目描述 N (1 ≤ N ≤ 100) cows, convenie ...
随机推荐
- 某个应用使cpu使用率100%
--CPU使用率 Linux是一个多任务的操作系统,将每个cpu的时间划分为很短的时间片,再通过调度器轮流分配给各个任务使用,因此造成多任务同时运行的错觉 为了维护cpu时间,linux通过事先定义的 ...
- 2016.7.10 SqlServer语句中类似decode、substr、instr、replace、length等函数的用法
Decode() 对应 case when函数 case CHARINDEX('/',start_point_name) when 0 then start_point_name else subst ...
- 2015.5.11 string与byte[]相互转换
string类型转成byte[]: byte[] byteArray = System.Text.Encoding.Default.GetBytes ( str ); 反过来,byte[]转成stri ...
- Rename Oracle Managed File (OMF) datafiles in ASM(ZT)
Recently I was asked to rename a tablespace. The environment was Oracle version 11.2.0.3 (both datab ...
- 1.《Spring学习笔记-MVC》系列文章,讲解返回json数据的文章共有3篇,分别为:
转自:https://www.cnblogs.com/ssslinppp/p/4528892.html [Spring学习笔记-MVC-3]SpringMVC返回Json数据-方式1:http://w ...
- LAMP 2.3 Apache配置防盗链
如果你的站点是一个图片站,有很多非常漂亮的美女图片,那我相信,时间久了会有很多人来你网站借图片,有的人直接下载走了,还有的人直接取走图片的地址,比如你的网站域名是 www.123.com,图片地址为 ...
- openGL一些概念02
着色器程序 着色器程序对象(Shader Program Object)是多个着色器合并之后并最终链接完成的版本. 如果要使用刚才编译的着色器我们必须把他们链接为一个着色器程序对象,然后在渲染对象的时 ...
- eclipse怎么查看class文件(eclipse安装反编译插件)
本人eclipse版本: Eclipse Java EE IDE for Web Developers. Version: Mars.2 Release (4.5.2) 步骤1:下载两个我们需要的东西 ...
- 探究QA职能
测试人员一般是被外界普遍认为是QC,即对产品的质量进行检测,找出质量问题并配合相关人员解决问题,从而管控产品质量,说通俗点就是帮开发找漏洞,给开发擦屁股:如果线上出现bug,就是你没有测试完整,最累的 ...
- android键盘的Done按钮
在EditText中,可以使用setImeOptions()方法来来开启软键盘的"Done"按钮. 示例代码如下:editText.setImeOptions(EditorInfo ...