拓扑排序/DP【洛谷P2883】 [USACO07MAR]牛交通Cow Traffic
P2883 [USACO07MAR]牛交通Cow Traffic
随着牛的数量增加,农场的道路的拥挤现象十分严重,特别是在每天晚上的挤奶时间。为了解决这个问题,FJ决定研究这个问题,以能找到导致拥堵现象的瓶颈所在。
牧场共有M条单向道路,每条道路连接着两个不同的交叉路口,为了方便研究,FJ将这些交叉路口编号为1..N,而牛圈位于交叉路口N。任意一条单向道路的方向一定是是从编号低的路口到编号高的路口,因此农场中不会有环型路径。同时,可能存在某两个交叉路口不止一条单向道路径连接的情况。
在挤奶时间到来的时候,奶牛们开始从各自的放牧地点回到牛圈。放牧地点是指那些没有道路连接进来的路口(入度为0的顶点)。
现在请你帮助fj通过计算从放牧点到达牛圈的路径数目来找到最繁忙的道路(答案保证是不超过32位整数)。
思维固化了。
看到这题直接套上P1685 游览的板子。
才得60分。
再读题(看题解),发现这题会有多个起点,多个终点。
那么对于多个终点,只能去n,所以还要从n建反边跑一边拓扑排序,这样一条边的贡献就是\(g(u)*f(v)\)。
好像我用了最笨的方法跑两边拓扑排序。
code:
#include <iostream>
#include <cstdio>
#include <queue>
using namespace std;
const int wx=500017;
inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
}
int n,m,ans;
int num,tot;
int g[wx],head[wx],h[wx],f[wx];
int in[wx],out[wx],in2[wx],out2[wx];
struct e{
int nxt,to;
}edge[wx*2];
void add(int from,int to){
edge[++num].nxt=head[from];
edge[num].to=to;
head[from]=num;
}
struct ee{
int nxt,to;
}e[wx*2];
void ADD(int from,int to){
e[++tot].nxt=h[from];
e[tot].to=to;
h[from]=tot;
}
queue<int > q;
void bfs1(){
for(int i=1;i<=n;i++)if(!in[i])g[i]=1,q.push(i);
while(q.size()){
int u=q.front(); q.pop();
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
g[v]+=g[u];
in[v]--;
if(!in[v]){
q.push(v);
}
}
}
}
void bfs2(){
for(int i=1;i<=n;i++)if(!in2[i])f[i]=1,q.push(i);
while(q.size()){
int u=q.front(); q.pop();
for(int i=h[u];i;i=e[i].nxt){
int v=e[i].to;
f[v]+=f[u];
in2[v]--;
if(!in2[v])q.push(v);
}
}
for(int u=1;u<=n;u++){
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
ans=max(ans,g[u]*f[v]);
}
}
}
int main(){
n=read(); m=read();
for(int i=1;i<=m;i++){
int x,y;
x=read(); y=read();
if(x>y)swap(x,y);
add(x,y); in[y]++; out[x]++;
ADD(y,x); in2[x]++; out2[y]++;
}
bfs1();
bfs2();
printf("%d\n",ans);
return 0;
}
拓扑排序/DP【洛谷P2883】 [USACO07MAR]牛交通Cow Traffic的更多相关文章
- bzoj1638 / P2883 [USACO07MAR]牛交通Cow Traffic
P2883 [USACO07MAR]牛交通Cow Traffic 对于每一条边$(u,v)$ 设入度为0的点到$u$有$f[u]$种走法 点$n$到$v$(通过反向边)有$f2[v]$种走法 显然经过 ...
- 洛谷P3045 [USACO12FEB]牛券Cow Coupons
P3045 [USACO12FEB]牛券Cow Coupons 71通过 248提交 题目提供者洛谷OnlineJudge 标签USACO2012云端 难度提高+/省选- 时空限制1s / 128MB ...
- 洛谷 P2419 [USACO08JAN]牛大赛Cow Contest
题目背景 [Usaco2008 Jan] 题目描述 N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a p ...
- 洛谷——P2952 [USACO09OPEN]牛线Cow Line
P2952 [USACO09OPEN]牛线Cow Line 题目描述 Farmer John's N cows (conveniently numbered 1..N) are forming a l ...
- 洛谷 P3014 [USACO11FEB]牛线Cow Line
P3014 [USACO11FEB]牛线Cow Line 题目背景 征求翻译.如果你能提供翻译或者题意简述,请直接发讨论,感谢你的贡献. 题目描述 The N (1 <= N <= 20) ...
- 洛谷 P3111 [USACO14DEC]牛慢跑Cow Jog_Sliver
P3111 [USACO14DEC]牛慢跑Cow Jog_Sliver 题目描述 The cows are out exercising their hooves again! There are N ...
- [洛谷P3014][USACO11FEB]牛线Cow Line (康托展开)(数论)
如果在阅读本文之前对于康托展开没有了解的同学请戳一下这里: 简陋的博客 百度百科 题目描述 N(1<=N<=20)头牛,编号为1...N,正在与FJ玩一个疯狂的游戏.奶牛会排成一行 ...
- 洛谷P3111 [USACO14DEC]牛慢跑Cow Jog_Sliver
传送门 题目大意:n头牛在单行道n个位置,开始用不同的速度跑步. 当后面的牛追上前面的牛,后面的牛会和前面的牛以一样的速度 跑,称为一个小团体.问:ts后有多少个小团体. 题解:模拟 倒着扫一遍,因为 ...
- 洛谷—— P2419 [USACO08JAN]牛大赛Cow Contest
https://www.luogu.org/problem/show?pid=2419 题目背景 [Usaco2008 Jan] 题目描述 N (1 ≤ N ≤ 100) cows, convenie ...
随机推荐
- 云服务利用Auto Scaling节省30%成本
公有云提供了很多免费的高级功能,很多中小用户以为自己用不上.实际上稍微研究一下,就能享受很多便利和节省不少成本. 本方案就是利用弹性伸缩(auto-scaling)减少服务器成本,几乎适合所有集群式部 ...
- ABP工作单元
简介 Unit of work:维护受业务事务影响的对象列表,并协调变化的写入和并发问题的解决.即管理对象的CRUD操作,以及相应的事务与并发问题等.Unit of Work是用来解决领域模型存储和变 ...
- DAY11-MYSQL数据操作
一 介绍 MySQL数据操作: DML ======================================================== 在MySQL管理软件中,可以通过SQL语句中的 ...
- 用JS写一个简单的程序,算出100中7的倍数的最大值
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 配置镜像yum源--解决RHN not available的问题
由于RHN服务是收费的,在安装redhat系统时,自带的yum可能不能使用.中国有很多好用的镜像源,我们可以把yum源更改到国内镜像源上,步骤如下: 一.卸载本地yum #rpm –qa|grep y ...
- C++之deque
deque(包含头文件#include<deque>)由若干段连续空间串接而成,一旦有必要在deque的头部或尾端增加新的空间,便配置一段定量连续的空间,串接在deque的头部或尾端.de ...
- 安装Oracle 11.2.0.3 Client Win 32-bit
第一步:安装Oracle 11.2 32-bit数据库1.双击setup文件,进入安装界面 2.选择跳过升级选项 3.设置oracle安装根目录 4.确认选项,没有问题点击“安装” 第二步:创建数据库
- 关于handler的再次讨论
主要有两个问题,post方法和sendmessage方法有什么不同? 同一个handler对象发送的message只能发送给自己吗? 问题1: post方法,对于Handler的Post方式来说,它会 ...
- day35-hibernate映射 03-Hibernate持久态对象自动更新数据库
持久态对象一个非常重要的能力:自动更新数据库. package cn.itcast.hibernate3.demo1; import static org.junit.Assert.*; import ...
- 【总结整理】json数据请求简化版理解(祺哥的成果)
在同源js目录下新建.txt文件 { "news":[ {"title":"审计管理","time":"201 ...