3维空间中的最小生成树。。。。
好久没碰关于图的东西了。。。。。

             Building a Space Station
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 3804   Accepted: 1940

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834

Source

Japan 2003 Domestic

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath> using namespace std; const double eps=1e-;
const double INF=0x3f3f3f3f; struct node
{
double x,y,z,r;
node() {}
node(double a,double b,double c,double d):x(a),y(b),z(c),r(d) {}
}space[]; double Dist(node a,node b)
{
double ans=sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
ans=ans-a.r-b.r;
if(ans<eps) ans=;
return ans;
} double d[][]; int n;
bool vis[];
double dis[]; double PRIM()
{
memset(vis,false,sizeof(vis));
for(int i=;i<n;i++) dis[i]=INF;
dis[]=;double ans=;
for(int i=;i<n;i++)
{
int mark=-;
for(int j=;j<n;j++)
{
if(!vis[j])
{
if(mark==-) mark=j;
else if(dis[j]<dis[mark]) mark=j;
}
}
if(mark==-) break;
vis[mark]=true;
ans+=dis[mark];
for(int j=;j<n;j++)
{
if(j==mark) continue;
if(!vis[j])
{
dis[j]=min(dis[j],d[mark][j]);
}
}
}
return ans;
} int main()
{
while(scanf("%d",&n)!=EOF&&n)
{
for(int i=;i<n;i++)
{
double a,b,c,d;
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
space[i]=node(a,b,c,d);
}
memset(dis,,sizeof(dis));
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
if(i==j) continue;
d[i][j]=Dist(space[i],space[j]);
}
}
printf("%.3lf\n",PRIM());
}
return ;
}

POJ 2031 Building a Space Station的更多相关文章

  1. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  2. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  3. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  4. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  5. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  6. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

  7. POJ 2031 Building a Space Station【最小生成树+简单计算几何】

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  8. POJ 2031 Building a Space Station (prim裸题)

    Description You are a member of the space station engineering team, and are assigned a task in the c ...

  9. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

随机推荐

  1. django 快速搭建blog

    如果本文看不懂的,去看的我视频吧!http://www.testpub.cn/ ------------------------------------------- Django 自称是“最适合开发 ...

  2. Java Code Examples for javax.servlet.http.Part

    http://www.programcreek.com/java-api-examples/index.php?api=javax.servlet.http.Part The following ar ...

  3. iOS - 基础面试知识

    1.arc(automatic reference counting) OC对象被创建时引用计数从默认值0加1,当它被释放时候引用计数减1,引用计数减0时autorelease方法,销毁OC对象. 自 ...

  4. [USACO2009 NOV GOLD]奶牛的图片

    校内题,不给传送门了. 以前做完NOIp2013的火柴排队那道题后,当时很担心NOIp会出那种题,因为贪心的规则能不能看出来真的要看运气.但是这类题做多了后发现其实那道题的规则其实是很多题都已经用到了 ...

  5. Tarjan_LCA

    貌似求LCA使用倍增已经可以应付掉大多数需要LCA的题了.. 但是有些时候$O(MlogN)$的复杂度就不可接受了 Tarjan_LCA对于每个询问采用离线处理 总复杂度为$O(M+N)$ 这个复杂度 ...

  6. 使用chrome查看网页上效果的实现方式

    使用chrome查看网页上效果的实现方式 chrome是一个极为强大的工具,很多时候,我们不知道一个效果怎么实现的,我们完全可以找到响应的网页,然后找到其html文件,和js文件,查看源码,获得其实现 ...

  7. iOS开发-二维码

    二维码 从ios7开始集成了二维码的生成和读取功能 此前被广泛使用的zbarsdk目前不支持64位处理器 生成二维码的步骤: 倒入CoreImage框架 通过滤镜CIFilter生成二维码 二维码的内 ...

  8. mysql case when

    下面为您举例说明了三种mysql中case when语句的使用方法,供您参考学习,如果您对mysql中case when语句使用方面感兴趣的话,不妨一看. 1. select name, case w ...

  9. Java导包——import语句

    使用语句import org.common.demo01.Demo: 或者import org.common.demo01.*: 如果一个类声明为public class,则文件名称必须与类名称一致, ...

  10. shelve模块理解

    import shelve import sys def store_person(db): pid = input("Enter unique ID mnumber:") per ...