3维空间中的最小生成树。。。。
好久没碰关于图的东西了。。。。。

             Building a Space Station
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 3804   Accepted: 1940

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834

Source

Japan 2003 Domestic

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath> using namespace std; const double eps=1e-;
const double INF=0x3f3f3f3f; struct node
{
double x,y,z,r;
node() {}
node(double a,double b,double c,double d):x(a),y(b),z(c),r(d) {}
}space[]; double Dist(node a,node b)
{
double ans=sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
ans=ans-a.r-b.r;
if(ans<eps) ans=;
return ans;
} double d[][]; int n;
bool vis[];
double dis[]; double PRIM()
{
memset(vis,false,sizeof(vis));
for(int i=;i<n;i++) dis[i]=INF;
dis[]=;double ans=;
for(int i=;i<n;i++)
{
int mark=-;
for(int j=;j<n;j++)
{
if(!vis[j])
{
if(mark==-) mark=j;
else if(dis[j]<dis[mark]) mark=j;
}
}
if(mark==-) break;
vis[mark]=true;
ans+=dis[mark];
for(int j=;j<n;j++)
{
if(j==mark) continue;
if(!vis[j])
{
dis[j]=min(dis[j],d[mark][j]);
}
}
}
return ans;
} int main()
{
while(scanf("%d",&n)!=EOF&&n)
{
for(int i=;i<n;i++)
{
double a,b,c,d;
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
space[i]=node(a,b,c,d);
}
memset(dis,,sizeof(dis));
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
if(i==j) continue;
d[i][j]=Dist(space[i],space[j]);
}
}
printf("%.3lf\n",PRIM());
}
return ;
}

POJ 2031 Building a Space Station的更多相关文章

  1. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  2. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  3. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  4. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  5. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  6. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

  7. POJ 2031 Building a Space Station【最小生成树+简单计算几何】

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  8. POJ 2031 Building a Space Station (prim裸题)

    Description You are a member of the space station engineering team, and are assigned a task in the c ...

  9. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

随机推荐

  1. POJ2010 Moo University - Financial Aid(二分法)

    题目地址 分析:如果用二分法,关键是score和aid分开排序,score排序是为了充分利用中位数的性质,这样就可以确定m左右必须各选N/2个,到这之后有人是用dp求最优解,可以再次按照aid排序一次 ...

  2. C语言实现penna模型

    一年前写的代码,偶然翻出来.发现自己当时水平还不赖吗. # include <stdio.h> # include <stdlib.h> # include <time. ...

  3. 正则表达式re模块

    正则表达式模块re 1. 正则简介 就其本质而言,正则表达式(或 RE)是一种小型的.高度专业化的编程语言, (在Python中)它内嵌在Python中,并通过 re 模块实现.正则表达式模式被 编译 ...

  4. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  5. linux 学习基础7之脚本的练习

    练习:传递一个用户名参数给脚本,判断此用户的用户名跟其基本组的组名是否一致,并将结果显示出来.写一个脚本:#!/bin/bashUSER=$1if [ !  $# -eq 1 ];then  echo ...

  6. NOIp模拟赛 旅游

    很神奇的一道题,金策大爷给的题解: 什么叫神犇什么叫蒟蒻? IOI冠军的一句基本相同让我思考了一下午. 看完了题解我就想都没想开始用遍历二分图搞,但是搞到了65分后就总是会WA掉7组. 然后仔细的看了 ...

  7. ASP.NET 递归将分类绑定到 TreeView

    CREATE TABLE [dbo].[sysMenuTree]([NoteId] [decimal](18, 0) NOT NULL,[ParentId] [decimal](18, 0) NULL ...

  8. SVM松弛变量-记录毕业论文3

    上一篇博客讨论了高维映射和核函数,也通过例子说明了将特征向量映射到高维空间中可以使其线性可分.然而,很多情况下的高维映射并不能保证线性可分,这时就可以通过加入松弛变量放松约束条件.同样这次的记录仍然通 ...

  9. 获取字符串中每个字符出现的次数(利用TreeMap)

    案例:"aababcabcdabcde",获取字符串中每一个字母出现的次数要求结果:a(5)b(4)c(3)d(2)e(1)分析1:定义一个字符串(可以改进为键盘录入)2:定义一个 ...

  10. HTML学习笔记——图片显示、图片跳转、图片相对路径

    1>显示图片.用a标签实现点击图片跳转.地图标签/点击图片上固定区域跳转 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transit ...