随机偏微分方程

Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probability space satisfying the usual conditions.

1. Recall the following results:

a)         The Doob maximal inequality: if $(N_t)$ is a non-negative $\calF_t$-submartingale with $N_0=0$, then for $1<p<\infty$, $$\bex E\sez{\sup_{0\leq t\leq T}\sev{N_t}^p} \leq \sex{\frac{p}{p-1}}^p E\sez{\sev{N_T}^p}. \eex$$

b)        The set $\calS$ of simple processes is dense in the Hilbert space $\sex{\calH,\ \sen{\cdot}_{\calH}}$, where $$\bex \calS:=\left\{\xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t):\ 0=t_0<t_1<\cdots<t_n\leq T,\right.\\ \left.\xi_k\in\calF_{t_k},\ \sup_k\sen{\xi_k}_\infty<\infty\right\}, \eex$$ and $$\bex \calH:=\left\{H:\ [0,T]\times\Omega \to \bbR \mbox{ is continuous and } \calF_t\mbox{-adapted}:\right.\\ \left. \sen{H}_{\calH}^2 := E\sez{\int_0^T\sev{H(s)}^2\rd s}<\infty\right\}. \eex$$  Set $$\bex \calM:=\left\{ M=(M_t)_{t\in [0,T]} \mbox{ is continuous } \calF_t\mbox{-martingales such that } \right.\\ \left. \sen{M}_\calM^2 :=\sup_{0\leq t\leq T} E\sez{\sev{M_t}^2} <+\infty \right\}. \eex$$ Then $(\calM,\sen{\cdot}_\calM)$ is a Hilbert space.  Let $\xi:\ [0,T]\times \Omega\to \bbR$ be the simple process given by $$\bex \xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t), \eex$$ where $0=t_0<t_1<\cdots<t_n=T$, and $\xi_k\in \calF_{t_k}$ such that $\dps{\sup_k \sev{\xi_k}<\infty}$. Define $$\bex M_t=\int_0^t\xi_k\rd W_s :=\sum_{k=0}^n \xi_k\sex{W_{t_{k+1}\wedge t-W_{t_k\wedge t}}}, \eex$$

a)          Prove that $M_t$ is a continuous $\calF_t$-martingale.

b)         Prove the It\^o's isometry identity: $$\bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t\sev{\xi_s}^2\rd s}. \eex$$

c)        Using the Doob maximal inequality, prove that $$\bex E\sez{\sup_{0\leq t\leq T} \sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{\xi_s}^2\rd s}. \eex$$

d)        Given $H\in \calH$, let $H_n\in \calS$ be a sequence such that $\sen{H_n-H}_{\calH}\to 0$ as $n\to\infty$. Prove that $\dps{M_t^n =\int_0^t H_n(s)\rd W_s}$ is a Cauchy sequence in $\sex{\calM,\sen{\cdot}_\calM}$. Let $M$ be the limit of $\sed{M_n(t);\ t\in [0,T]}$ in $\sex{\calM,\sen{\cdot}_\calM}$. Prove that this limit does not depend on the choice of the sequence $H_n$ which tends to $H$ in $\sex{\calH,\sen{\cdot}_\calH}$. Denote by $\dps{M_t:=\int_0^t H(s)\rd W_s}$, i.e. $$\bex \int_0^t H(s)\rd W_s =\lim_{n\to\infty} \int_0^t H_n(s)\rd W_s,\mbox{ in } \sex{\calM,\sen{\cdot}_\calM}. \eex$$

e)         Prove that $\dps{M_t=\int_0^t H(s)\rd W_s}$ is a $\calF_t$-martingale and satisfies $$\bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t \sev{H(s)}^2\rd s}, \eex$$ and $$\bex E\sez{\sup_{0\leq t\leq T}\sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{H(s)}^2\rd s}. \eex$$

f)         Using the Borel-Cantelli lemma, prove that $ P$-a.s., $M=(M_t)\in C([0,T];\bbR)$.

2. Consider the following SDE on $\bbR^m$: $$\bex \rd X_t=\rd W_t-\n V(X_t)\rd t,\quad X_0=x, \eex$$ where $V\in C_b^2(\bbR^m)$. Fix $T>0$. Suppose that $u(t,x)\in C_b^{1,2}([0,T]\times\bbR^m,\bbR)$ is a solution of the heat equation $$\bex \left\{\ba{ll} \frac{\p u}{\p t}(t,x) =\frac{1}{2}\lap u(t,x) -\sef{\n V(x),\n u(t,x)},&\mbox{in }[0,T)\times \bbR^m,\\ u(0,x)=f(x),&x\in \bbR^m, \ea\right. \eex$$ where $f\in C_b(\bbR^m)$. Applying It\^o's formula to $u(T-t,X_t)$, prove that $$\bex u(t,x)= E_x\sez{f(X_t)},\quad \forall\ t\geq 0,\ x\in \bbR^m. \eex$$

3. Consider the following SPDE on $[0,T]\times S^1$: $$\bee\label{1} \frac{\p}{\p t}u(t,x) =\lap u+\dot W(t,x), \eee$$ where $t\in [0,\infty)$ and $x\in S^1=[0,2\pi]$, $\dps{\lap=\frac{\p^2}{\p x^2}}$ is the Laplace operator on $S^1$, and $W(t,x)$ is the space-time white noise on $[0,\infty)\times S^1$.  Recall that $\lap$ is a compact operator on $L^2(S^1,\rd x)$ and the spectral of $\lap$ is given by $$\bex \mbox{Sp}(\lap)=\sed{-n^2;\ n\in \bbN}. \eex$$ Indeed, let $$\bex e_{2n}(x)=\frac{1}{\sqrt{\pi}}\cos(nx),\quad e_{2n+1}(x)=\frac{1}{\sqrt{\pi}} \sin (nx),\quad n\in\bbN,\ x\in S^1. \eex$$  Then $$\bex \lap e_{2n}=-n^2 e_{2n},\quad \lap e_{2n+1}=-n^2e_{2n+1},\quad \forall\ n\in\bbN. \eex$$ The set $\sed{e_n}$ consists of a complete orthonormal basis of $L^2(S^1,\rd x)$. Write $$\bex W(t,x)=\sum_{n=1}^\infty W_n(t)e_n(x), \eex$$ where $W_n(t)$ are i.i.d Brownian motion on $\bbR^1$.

(a) Let $$\bex X_t(\cdot) =u(t,\cdot)\in L^2(S^1,\rd x). \eex$$ Prove that $X_t$ satisfies the Ornstein-Uhlenbeck SDE on $L^2(S^1,\rd x)$: $$\bex \rd X_t=\lap X_t+\rd W_t, \eex$$ and $\dps{W_t=\sum_{n=0}^\infty W_n(t)e_n}$ is the cylinder Brownian motion on $L^2(S^1,\rd x)$.

(b) Let $\dps{u(t,x)=\sum_{n\in \bbN} u_n(t)e_n(x)}$ be the orthogonal decomposition of $u(t,\cdot)$ in $L^2(S^1,\rd x)$. Prove that $u_n(t)$ satisfies the Langevin SDE on $\bbR$: $$\bex \rd u_n(t)=-n^2 u_n(t)\rd t+\rd W_n(t), \eex$$ and solve this Langevin SDE with initial condition $u_n(0)=u_n\in \bbR$.

© Find the mild solution to the SPDE \eqref{1} with initial condition $\dps{u(0,x)=\sum_{n=0}^\infty u_ne_n(x)}$ for $\dps{\sum_{n=0}^\infty \sev{u_n}^2<+\infty}$.

(d) Recall that the domain of $\lap$ is given by $$\bex H_0=\left\{u=\sum_{n=1}^\infty u_ne_n\in L^2(S^1,\rd x);\ u_n=\sef{u,e_n},\right.\\ \left.\mbox{ and } \sum_{n=1}^\infty n^2 \sev{u_n}^2<\infty\right\} . \eex$$ Let $$\bex \rd \mu(u)=\prod_{n=1}^\infty \frac{n}{\sqrt{2\pi}} \mbox{exp}\sez{-\frac{n^2\sev{u_n}^2}{2}}\rd u_n. \eex$$ Prove that $\mu$ is a Gaussian measure on $(H,\calB(H))$ with mean zero and with covariance matrix $Q=\sex{q_{ij}}_{\bbN\times\bbN}$ with $$\bex q_{ij}=\frac{1}{i^2}\delta_{ij}, \eex$$ i.e., $\mu=\calN(0,Q)$.  Formally we write $$\bex Q=\sex{-\lap}^{-1},\quad \mu=\calN(0,\sex{-\lap}^{-1}). \eex$$

(e) Prove that $\mu$ is an invariant measure for the Ornstein-Uhlenbeck processs $X_t$ on $L^2(S^1,\rd x)$.

(f) (Not required) Prove that $\mu$ is the unique invariant measure for the Ornstein-Uhlenbeck process $X_t$ on $L^2(S^1,\rd x)$.

可压 Navier-Stokes 方程

1. Consider the compressible fluid flow with damping: $$\bex \left\{\ba{ll} \p_t\rho+\Div(\rho\bbu)=0,\\ \p_t(\rho\bbu)+\Div\sex{\rho\bbu\otimes\bbu} +\n p=-\rho\bbu. \ea\right. \eex$$ Can this system satisfy Kawashima's condition?

2. Follow the similar analysis for Lemma 2.1 to prove (2.18) in Proposition 2.2.

3. Give the details of the proof of Lemma 3.1.

4. Give the details of the proof of Theorem 5.3.

5. Give the complete proof of Lemmas 6.4 and 6.5.

几何分析 [参考答案链接]

1.(15') 设 $R(X,Y):\ \calX(M)\to \calX(M)$ 为曲率, 求证:

(1) $R(X,Y)(fZ_1+gZ_2) =fR(X,Y)Z_1+gR(X,Y)Z_2$,  $\forall\ X,Y,Z_1,Z_2\in \calX(M), f,h\in C^\infty (M)$;

(2) $R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=0$,  $\forall\ X,Y,Z\in \calX(M)$.

2.(10') 设 $V(t),\ J(t)$ 是沿最短测地线 $\gamma(t),\ t\in [0,1]$ 的向量场, 它们满足 $$\bex V(t)\perp \dot\gamma(t),\quad J(t)\perp \dot\gamma(t),\quad V(0)=J(0),\quad V(1)=J(1), \eex$$ 且 $J(t)$ 是 Jacobi 场, 求证: $$\bex I(J,J)\leq I(V,V), \eex$$ 其中 $I$ 为 $\gamma$ 上的指标形式.

3.(10') 设 $\gamma(t):\ (-\infty,+\infty)\to M$ 为一条测地直线, 相应地记 $$\bex \gamma_+=\gamma|_{[0,+\infty)},\quad \gamma_-=\gamma|_{(-\infty,0]} \eex$$ 及两 Busemann 函数 $$\bex B_{\gamma_+}(x)=\lim_{t\to+\infty}\sez{d(x,\gamma(t))-t}; \eex$$ $$\bex B_{\gamma_-}(x)=\lim_{t\to-\infty}\sez{d(x,\gamma(t))+t}. \eex$$ 求证: $$\bex B_{\gamma_+}+B_{\gamma_-}=0,\quad\mbox{在 } \gamma \mbox{ 上}; \eex$$ $$\bex B_{\gamma_+}+B_{\gamma_-}\geq 0,\quad\mbox{在 } M \mbox{ 上}. \eex$$

4.(15') 设 $M$ 为紧流形, 再设 $g_{ij}(t)$ 满足 Ricci 流, 且 $f(t),\tau(t)$ 满足 $$\bex \frac{\p }{\p t}f=-\lap f+\sev{\n f}^2-R+\frac{n}{2\tau},\quad \frac{\p }{\p t}\tau =-1. \eex$$ 求证:

(1) $$\bex \frac{\rd}{\rd t}\int_M \sex{4\pi \tau}^{-\frac{n}{2}} e^{-f}\, \rd vol_{g_{ij}}=0; \eex$$

(2) $$\bex & &\frac{\rd }{\rd x}\int_M  \sez{\tau \sex{R+\sev{\n f}^2} +f-n}(4\pi^\tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}\\ & &=\int_M 2\tau \sev{R_{ij}+\n_i\n_j f-\frac{1}{2\tau}g_{ij}}^2 (4\pi \tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}. \eex$$

[家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何的更多相关文章

  1. [家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子

    Navier-Stokes equations 1 Let $\omega$ be a domain in $\bbR^3$, complement of a compact set $\mathca ...

  2. [家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性

    1. 方程  考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \ ...

  3. [家里蹲大学数学杂志]第047期18 世纪法国数学界的3L

    1 Lagrange---78岁 约瑟夫·拉格朗日, 全名约瑟夫·路易斯·拉格朗日 (Joseph-Louis Lagrange 1735~1813) 法国数学家.物理学家. 1736年1月25日生于 ...

  4. [家里蹲大学数学杂志]第237期Euler公式的美

    1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a.  $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b.  $i$: 虚数单位 $=\sqr ...

  5. [家里蹲大学数学杂志]第041期中山大学数计学院 2008 级数学与应用数学专业《泛函分析》期末考试试题 A

    1 ( 10 分 ) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X ...

  6. [家里蹲大学数学杂志]第053期Legendre变换

    $\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛 ...

  7. [家里蹲大学数学杂志]第056期Tikhonov 泛函的变分

    设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov ...

  8. [家里蹲大学数学杂志]第235期$L^p$ 调和函数恒为零

    设 $u$ 是 $\bbR^n$ 上的调和函数, 且 $$\bex \sen{u}_{L^p}=\sex{\int_{\bbR^n}|u(y)|^p\rd y}^{1/p}<\infty. \e ...

  9. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

随机推荐

  1. post multipart data boundary问题 使用curl 向jersey post文件

    原以为curl 模拟post file跟post string类似,-d参数一加 ,header一加就完了,这次遇到个问题,却怎么都搞不定. curl模拟post提交 与客户端定的协议是: Heade ...

  2. spring boot 初试,springboot入门,springboot helloworld例子

    因为项目中使用了spring boot ,之前没接触过,所以写个helloworld玩玩看,当做springboot的一个入门例子.搜索 spring boot.得到官方地址:http://proje ...

  3. MySQL操作汇总[转]

      这学期学习了数据库系统原理,做了实验,mark一记. 目录(没有一键目录不开心...) 1.T—SQL的简单查询.连接查询 (1)用SQL语句建库.建表并插入记录. (2)修改表结构,包括修改属性 ...

  4. MVC模型

    MVC:model.view.controller. 浏览器browser发出一个请求,被servlet(控制器controller)接收,由servlet去实例化一个模型层(JavaBean)的对象 ...

  5. python操作excel表格详解(xlrd/xlwt)

    http://www.2cto.com/kf/201501/373655.html http://blog.csdn.net/b_h_l/article/details/17001395 利用pyth ...

  6. 黑马程序员——OC语言Foundation框架 NSArray NSSet NSDictionary\NSMutableDictionary

    Java培训.Android培训.iOS培训..Net培训.期待与您交流! (以下内容是对黑马苹果入学视频的个人知识点总结) (一) NSNumber 将各种基本数据类型包装成NSNumber对象 @ ...

  7. MySQL文件目录格式及存放位置

    了解MYSQL的都知道,在MYSQL中建立任何一张数据表,在其数据目录对应的数据库目录下都有对应表的.frm文件,.frm文件是用来保存每个数据表的元数据(meta)信息,包括表结构的定义等,.frm ...

  8. WPF学习笔记——认识XAML

    Extensible Application Markup Language,XAML是一种声明性标记语言. 一.XAML语法概述 1,与XML类似,用尖括号标记元素 <StackPanel&g ...

  9. Android ViewPager Fragment使用懒加载提升性能

     Android ViewPager Fragment使用懒加载提升性能 Fragment在如今的Android开发中越来越普遍,但是当ViewPager结合Fragment时候,由于Androi ...

  10. 【转】精心推荐几款超实用的 CSS 开发工具

    原文转自:http://www.html5cn.org/article-5741-1.html 摘要: 当你开发一个网站或 Web 应用程序的时候,有合适的工具,绝对可以帮助您节省大量的时间.在这篇文 ...