随机偏微分方程

Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probability space satisfying the usual conditions.

1. Recall the following results:

a)         The Doob maximal inequality: if $(N_t)$ is a non-negative $\calF_t$-submartingale with $N_0=0$, then for $1<p<\infty$, $$\bex E\sez{\sup_{0\leq t\leq T}\sev{N_t}^p} \leq \sex{\frac{p}{p-1}}^p E\sez{\sev{N_T}^p}. \eex$$

b)        The set $\calS$ of simple processes is dense in the Hilbert space $\sex{\calH,\ \sen{\cdot}_{\calH}}$, where $$\bex \calS:=\left\{\xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t):\ 0=t_0<t_1<\cdots<t_n\leq T,\right.\\ \left.\xi_k\in\calF_{t_k},\ \sup_k\sen{\xi_k}_\infty<\infty\right\}, \eex$$ and $$\bex \calH:=\left\{H:\ [0,T]\times\Omega \to \bbR \mbox{ is continuous and } \calF_t\mbox{-adapted}:\right.\\ \left. \sen{H}_{\calH}^2 := E\sez{\int_0^T\sev{H(s)}^2\rd s}<\infty\right\}. \eex$$  Set $$\bex \calM:=\left\{ M=(M_t)_{t\in [0,T]} \mbox{ is continuous } \calF_t\mbox{-martingales such that } \right.\\ \left. \sen{M}_\calM^2 :=\sup_{0\leq t\leq T} E\sez{\sev{M_t}^2} <+\infty \right\}. \eex$$ Then $(\calM,\sen{\cdot}_\calM)$ is a Hilbert space.  Let $\xi:\ [0,T]\times \Omega\to \bbR$ be the simple process given by $$\bex \xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t), \eex$$ where $0=t_0<t_1<\cdots<t_n=T$, and $\xi_k\in \calF_{t_k}$ such that $\dps{\sup_k \sev{\xi_k}<\infty}$. Define $$\bex M_t=\int_0^t\xi_k\rd W_s :=\sum_{k=0}^n \xi_k\sex{W_{t_{k+1}\wedge t-W_{t_k\wedge t}}}, \eex$$

a)          Prove that $M_t$ is a continuous $\calF_t$-martingale.

b)         Prove the It\^o's isometry identity: $$\bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t\sev{\xi_s}^2\rd s}. \eex$$

c)        Using the Doob maximal inequality, prove that $$\bex E\sez{\sup_{0\leq t\leq T} \sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{\xi_s}^2\rd s}. \eex$$

d)        Given $H\in \calH$, let $H_n\in \calS$ be a sequence such that $\sen{H_n-H}_{\calH}\to 0$ as $n\to\infty$. Prove that $\dps{M_t^n =\int_0^t H_n(s)\rd W_s}$ is a Cauchy sequence in $\sex{\calM,\sen{\cdot}_\calM}$. Let $M$ be the limit of $\sed{M_n(t);\ t\in [0,T]}$ in $\sex{\calM,\sen{\cdot}_\calM}$. Prove that this limit does not depend on the choice of the sequence $H_n$ which tends to $H$ in $\sex{\calH,\sen{\cdot}_\calH}$. Denote by $\dps{M_t:=\int_0^t H(s)\rd W_s}$, i.e. $$\bex \int_0^t H(s)\rd W_s =\lim_{n\to\infty} \int_0^t H_n(s)\rd W_s,\mbox{ in } \sex{\calM,\sen{\cdot}_\calM}. \eex$$

e)         Prove that $\dps{M_t=\int_0^t H(s)\rd W_s}$ is a $\calF_t$-martingale and satisfies $$\bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t \sev{H(s)}^2\rd s}, \eex$$ and $$\bex E\sez{\sup_{0\leq t\leq T}\sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{H(s)}^2\rd s}. \eex$$

f)         Using the Borel-Cantelli lemma, prove that $ P$-a.s., $M=(M_t)\in C([0,T];\bbR)$.

2. Consider the following SDE on $\bbR^m$: $$\bex \rd X_t=\rd W_t-\n V(X_t)\rd t,\quad X_0=x, \eex$$ where $V\in C_b^2(\bbR^m)$. Fix $T>0$. Suppose that $u(t,x)\in C_b^{1,2}([0,T]\times\bbR^m,\bbR)$ is a solution of the heat equation $$\bex \left\{\ba{ll} \frac{\p u}{\p t}(t,x) =\frac{1}{2}\lap u(t,x) -\sef{\n V(x),\n u(t,x)},&\mbox{in }[0,T)\times \bbR^m,\\ u(0,x)=f(x),&x\in \bbR^m, \ea\right. \eex$$ where $f\in C_b(\bbR^m)$. Applying It\^o's formula to $u(T-t,X_t)$, prove that $$\bex u(t,x)= E_x\sez{f(X_t)},\quad \forall\ t\geq 0,\ x\in \bbR^m. \eex$$

3. Consider the following SPDE on $[0,T]\times S^1$: $$\bee\label{1} \frac{\p}{\p t}u(t,x) =\lap u+\dot W(t,x), \eee$$ where $t\in [0,\infty)$ and $x\in S^1=[0,2\pi]$, $\dps{\lap=\frac{\p^2}{\p x^2}}$ is the Laplace operator on $S^1$, and $W(t,x)$ is the space-time white noise on $[0,\infty)\times S^1$.  Recall that $\lap$ is a compact operator on $L^2(S^1,\rd x)$ and the spectral of $\lap$ is given by $$\bex \mbox{Sp}(\lap)=\sed{-n^2;\ n\in \bbN}. \eex$$ Indeed, let $$\bex e_{2n}(x)=\frac{1}{\sqrt{\pi}}\cos(nx),\quad e_{2n+1}(x)=\frac{1}{\sqrt{\pi}} \sin (nx),\quad n\in\bbN,\ x\in S^1. \eex$$  Then $$\bex \lap e_{2n}=-n^2 e_{2n},\quad \lap e_{2n+1}=-n^2e_{2n+1},\quad \forall\ n\in\bbN. \eex$$ The set $\sed{e_n}$ consists of a complete orthonormal basis of $L^2(S^1,\rd x)$. Write $$\bex W(t,x)=\sum_{n=1}^\infty W_n(t)e_n(x), \eex$$ where $W_n(t)$ are i.i.d Brownian motion on $\bbR^1$.

(a) Let $$\bex X_t(\cdot) =u(t,\cdot)\in L^2(S^1,\rd x). \eex$$ Prove that $X_t$ satisfies the Ornstein-Uhlenbeck SDE on $L^2(S^1,\rd x)$: $$\bex \rd X_t=\lap X_t+\rd W_t, \eex$$ and $\dps{W_t=\sum_{n=0}^\infty W_n(t)e_n}$ is the cylinder Brownian motion on $L^2(S^1,\rd x)$.

(b) Let $\dps{u(t,x)=\sum_{n\in \bbN} u_n(t)e_n(x)}$ be the orthogonal decomposition of $u(t,\cdot)$ in $L^2(S^1,\rd x)$. Prove that $u_n(t)$ satisfies the Langevin SDE on $\bbR$: $$\bex \rd u_n(t)=-n^2 u_n(t)\rd t+\rd W_n(t), \eex$$ and solve this Langevin SDE with initial condition $u_n(0)=u_n\in \bbR$.

© Find the mild solution to the SPDE \eqref{1} with initial condition $\dps{u(0,x)=\sum_{n=0}^\infty u_ne_n(x)}$ for $\dps{\sum_{n=0}^\infty \sev{u_n}^2<+\infty}$.

(d) Recall that the domain of $\lap$ is given by $$\bex H_0=\left\{u=\sum_{n=1}^\infty u_ne_n\in L^2(S^1,\rd x);\ u_n=\sef{u,e_n},\right.\\ \left.\mbox{ and } \sum_{n=1}^\infty n^2 \sev{u_n}^2<\infty\right\} . \eex$$ Let $$\bex \rd \mu(u)=\prod_{n=1}^\infty \frac{n}{\sqrt{2\pi}} \mbox{exp}\sez{-\frac{n^2\sev{u_n}^2}{2}}\rd u_n. \eex$$ Prove that $\mu$ is a Gaussian measure on $(H,\calB(H))$ with mean zero and with covariance matrix $Q=\sex{q_{ij}}_{\bbN\times\bbN}$ with $$\bex q_{ij}=\frac{1}{i^2}\delta_{ij}, \eex$$ i.e., $\mu=\calN(0,Q)$.  Formally we write $$\bex Q=\sex{-\lap}^{-1},\quad \mu=\calN(0,\sex{-\lap}^{-1}). \eex$$

(e) Prove that $\mu$ is an invariant measure for the Ornstein-Uhlenbeck processs $X_t$ on $L^2(S^1,\rd x)$.

(f) (Not required) Prove that $\mu$ is the unique invariant measure for the Ornstein-Uhlenbeck process $X_t$ on $L^2(S^1,\rd x)$.

可压 Navier-Stokes 方程

1. Consider the compressible fluid flow with damping: $$\bex \left\{\ba{ll} \p_t\rho+\Div(\rho\bbu)=0,\\ \p_t(\rho\bbu)+\Div\sex{\rho\bbu\otimes\bbu} +\n p=-\rho\bbu. \ea\right. \eex$$ Can this system satisfy Kawashima's condition?

2. Follow the similar analysis for Lemma 2.1 to prove (2.18) in Proposition 2.2.

3. Give the details of the proof of Lemma 3.1.

4. Give the details of the proof of Theorem 5.3.

5. Give the complete proof of Lemmas 6.4 and 6.5.

几何分析 [参考答案链接]

1.(15') 设 $R(X,Y):\ \calX(M)\to \calX(M)$ 为曲率, 求证:

(1) $R(X,Y)(fZ_1+gZ_2) =fR(X,Y)Z_1+gR(X,Y)Z_2$,  $\forall\ X,Y,Z_1,Z_2\in \calX(M), f,h\in C^\infty (M)$;

(2) $R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=0$,  $\forall\ X,Y,Z\in \calX(M)$.

2.(10') 设 $V(t),\ J(t)$ 是沿最短测地线 $\gamma(t),\ t\in [0,1]$ 的向量场, 它们满足 $$\bex V(t)\perp \dot\gamma(t),\quad J(t)\perp \dot\gamma(t),\quad V(0)=J(0),\quad V(1)=J(1), \eex$$ 且 $J(t)$ 是 Jacobi 场, 求证: $$\bex I(J,J)\leq I(V,V), \eex$$ 其中 $I$ 为 $\gamma$ 上的指标形式.

3.(10') 设 $\gamma(t):\ (-\infty,+\infty)\to M$ 为一条测地直线, 相应地记 $$\bex \gamma_+=\gamma|_{[0,+\infty)},\quad \gamma_-=\gamma|_{(-\infty,0]} \eex$$ 及两 Busemann 函数 $$\bex B_{\gamma_+}(x)=\lim_{t\to+\infty}\sez{d(x,\gamma(t))-t}; \eex$$ $$\bex B_{\gamma_-}(x)=\lim_{t\to-\infty}\sez{d(x,\gamma(t))+t}. \eex$$ 求证: $$\bex B_{\gamma_+}+B_{\gamma_-}=0,\quad\mbox{在 } \gamma \mbox{ 上}; \eex$$ $$\bex B_{\gamma_+}+B_{\gamma_-}\geq 0,\quad\mbox{在 } M \mbox{ 上}. \eex$$

4.(15') 设 $M$ 为紧流形, 再设 $g_{ij}(t)$ 满足 Ricci 流, 且 $f(t),\tau(t)$ 满足 $$\bex \frac{\p }{\p t}f=-\lap f+\sev{\n f}^2-R+\frac{n}{2\tau},\quad \frac{\p }{\p t}\tau =-1. \eex$$ 求证:

(1) $$\bex \frac{\rd}{\rd t}\int_M \sex{4\pi \tau}^{-\frac{n}{2}} e^{-f}\, \rd vol_{g_{ij}}=0; \eex$$

(2) $$\bex & &\frac{\rd }{\rd x}\int_M  \sez{\tau \sex{R+\sev{\n f}^2} +f-n}(4\pi^\tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}\\ & &=\int_M 2\tau \sev{R_{ij}+\n_i\n_j f-\frac{1}{2\tau}g_{ij}}^2 (4\pi \tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}. \eex$$

[家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何的更多相关文章

  1. [家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子

    Navier-Stokes equations 1 Let $\omega$ be a domain in $\bbR^3$, complement of a compact set $\mathca ...

  2. [家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性

    1. 方程  考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \ ...

  3. [家里蹲大学数学杂志]第047期18 世纪法国数学界的3L

    1 Lagrange---78岁 约瑟夫·拉格朗日, 全名约瑟夫·路易斯·拉格朗日 (Joseph-Louis Lagrange 1735~1813) 法国数学家.物理学家. 1736年1月25日生于 ...

  4. [家里蹲大学数学杂志]第237期Euler公式的美

    1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a.  $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b.  $i$: 虚数单位 $=\sqr ...

  5. [家里蹲大学数学杂志]第041期中山大学数计学院 2008 级数学与应用数学专业《泛函分析》期末考试试题 A

    1 ( 10 分 ) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X ...

  6. [家里蹲大学数学杂志]第053期Legendre变换

    $\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛 ...

  7. [家里蹲大学数学杂志]第056期Tikhonov 泛函的变分

    设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov ...

  8. [家里蹲大学数学杂志]第235期$L^p$ 调和函数恒为零

    设 $u$ 是 $\bbR^n$ 上的调和函数, 且 $$\bex \sen{u}_{L^p}=\sex{\int_{\bbR^n}|u(y)|^p\rd y}^{1/p}<\infty. \e ...

  9. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

随机推荐

  1. 向下滚动页面加载图片的js

    js代码 scroll.photo.js : window.imgscroll = { options: { target: null, //插入图片的目标位置 img_list: null, //图 ...

  2. NodeJS利用mongoose模糊查询MongoDB

    在Node.js中,直接硬编码可以 Posts.where('title',/答案/); 但是 通过 字符串构造 不行 var qs = '/'+req.query.search+'/'; Posts ...

  3. FBI是如何破获“美国少女”裸照勒索案的

     9月30日消息,据外国媒体报道,美国FBI昨日披露,“美国少女”(Miss Teen USA )卡西迪·伍尔芙(Cassidy Wolf )遭遇黑客通过电脑摄像头偷拍裸照兼敲诈勒索一案的嫌疑人已经被 ...

  4. 实现手机扫描二维码页面登录,类似web微信-第二篇,关于二维码的自动生成

    转自:http://www.cnblogs.com/fengyun99/p/3541251.html 接上一章,我们已经基本把业务逻辑分析清楚了 下面我们第一步,实现二维码的web动态生成. 页面的二 ...

  5. Wince 6.0 窗口最大化显示

    在InitDialog用如下代码实现: CRect   m_FullScreenRect;   //全屏区域 CRect   WindowRect; GetWindowRect(&Window ...

  6. Android studio的深坑 导jar包重复的异常处理

    导包重复这个问题折磨了整整一天!! 第一个方法在gradle文件下看看有没有重复的包  如果有那么一切都是浮云分分钟搞定 ,最可恶的是在gradle里面没有. 在gradle里面找不到的话就要考虑一下 ...

  7. Android平板电脑开发— — —碎片

    碎片是一种可以嵌入在活动中的UI片段,它能让程序更加合理与充分地使用大屏幕的空间,碎片通常都是在平板电脑开发中才会使用 简单实例 左碎片布局 <?xml version="1.0&qu ...

  8. (转)初探Backbone

    (转)http://www.cnblogs.com/yexiaochai/archive/2013/07/27/3219402.html 初探Backbone 前言 Backbone简介 模型 模型和 ...

  9. P,NP,NPC,NPC-HARD

    P: 能在多项式时间内解决的问题 NP: 不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间验证的问题 NPC: NP完全问题,所有NP问题在多项式时间内都能约化(Reducib ...

  10. Windows 托盘区域显示图标

    NOTIFYICONDATA structure 这个结构体包含了向通知区域(底部任务栏右下角区域,下面都称为托盘)显示的信息.需要使用函数Shell_NotifyIcon. 结构体成员 typede ...