[家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何
随机偏微分方程
Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probability space satisfying the usual conditions.
1. Recall the following results:
a) The Doob maximal inequality: if $(N_t)$ is a non-negative $\calF_t$-submartingale with $N_0=0$, then for $1<p<\infty$, $$\bex E\sez{\sup_{0\leq t\leq T}\sev{N_t}^p} \leq \sex{\frac{p}{p-1}}^p E\sez{\sev{N_T}^p}. \eex$$
b) The set $\calS$ of simple processes is dense in the Hilbert space $\sex{\calH,\ \sen{\cdot}_{\calH}}$, where $$\bex \calS:=\left\{\xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t):\ 0=t_0<t_1<\cdots<t_n\leq T,\right.\\ \left.\xi_k\in\calF_{t_k},\ \sup_k\sen{\xi_k}_\infty<\infty\right\}, \eex$$ and $$\bex \calH:=\left\{H:\ [0,T]\times\Omega \to \bbR \mbox{ is continuous and } \calF_t\mbox{-adapted}:\right.\\ \left. \sen{H}_{\calH}^2 := E\sez{\int_0^T\sev{H(s)}^2\rd s}<\infty\right\}. \eex$$ Set $$\bex \calM:=\left\{ M=(M_t)_{t\in [0,T]} \mbox{ is continuous } \calF_t\mbox{-martingales such that } \right.\\ \left. \sen{M}_\calM^2 :=\sup_{0\leq t\leq T} E\sez{\sev{M_t}^2} <+\infty \right\}. \eex$$ Then $(\calM,\sen{\cdot}_\calM)$ is a Hilbert space. Let $\xi:\ [0,T]\times \Omega\to \bbR$ be the simple process given by $$\bex \xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t), \eex$$ where $0=t_0<t_1<\cdots<t_n=T$, and $\xi_k\in \calF_{t_k}$ such that $\dps{\sup_k \sev{\xi_k}<\infty}$. Define $$\bex M_t=\int_0^t\xi_k\rd W_s :=\sum_{k=0}^n \xi_k\sex{W_{t_{k+1}\wedge t-W_{t_k\wedge t}}}, \eex$$
a) Prove that $M_t$ is a continuous $\calF_t$-martingale.
b) Prove the It\^o's isometry identity: $$\bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t\sev{\xi_s}^2\rd s}. \eex$$
c) Using the Doob maximal inequality, prove that $$\bex E\sez{\sup_{0\leq t\leq T} \sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{\xi_s}^2\rd s}. \eex$$
d) Given $H\in \calH$, let $H_n\in \calS$ be a sequence such that $\sen{H_n-H}_{\calH}\to 0$ as $n\to\infty$. Prove that $\dps{M_t^n =\int_0^t H_n(s)\rd W_s}$ is a Cauchy sequence in $\sex{\calM,\sen{\cdot}_\calM}$. Let $M$ be the limit of $\sed{M_n(t);\ t\in [0,T]}$ in $\sex{\calM,\sen{\cdot}_\calM}$. Prove that this limit does not depend on the choice of the sequence $H_n$ which tends to $H$ in $\sex{\calH,\sen{\cdot}_\calH}$. Denote by $\dps{M_t:=\int_0^t H(s)\rd W_s}$, i.e. $$\bex \int_0^t H(s)\rd W_s =\lim_{n\to\infty} \int_0^t H_n(s)\rd W_s,\mbox{ in } \sex{\calM,\sen{\cdot}_\calM}. \eex$$
e) Prove that $\dps{M_t=\int_0^t H(s)\rd W_s}$ is a $\calF_t$-martingale and satisfies $$\bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t \sev{H(s)}^2\rd s}, \eex$$ and $$\bex E\sez{\sup_{0\leq t\leq T}\sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{H(s)}^2\rd s}. \eex$$
f) Using the Borel-Cantelli lemma, prove that $ P$-a.s., $M=(M_t)\in C([0,T];\bbR)$.
2. Consider the following SDE on $\bbR^m$: $$\bex \rd X_t=\rd W_t-\n V(X_t)\rd t,\quad X_0=x, \eex$$ where $V\in C_b^2(\bbR^m)$. Fix $T>0$. Suppose that $u(t,x)\in C_b^{1,2}([0,T]\times\bbR^m,\bbR)$ is a solution of the heat equation $$\bex \left\{\ba{ll} \frac{\p u}{\p t}(t,x) =\frac{1}{2}\lap u(t,x) -\sef{\n V(x),\n u(t,x)},&\mbox{in }[0,T)\times \bbR^m,\\ u(0,x)=f(x),&x\in \bbR^m, \ea\right. \eex$$ where $f\in C_b(\bbR^m)$. Applying It\^o's formula to $u(T-t,X_t)$, prove that $$\bex u(t,x)= E_x\sez{f(X_t)},\quad \forall\ t\geq 0,\ x\in \bbR^m. \eex$$
3. Consider the following SPDE on $[0,T]\times S^1$: $$\bee\label{1} \frac{\p}{\p t}u(t,x) =\lap u+\dot W(t,x), \eee$$ where $t\in [0,\infty)$ and $x\in S^1=[0,2\pi]$, $\dps{\lap=\frac{\p^2}{\p x^2}}$ is the Laplace operator on $S^1$, and $W(t,x)$ is the space-time white noise on $[0,\infty)\times S^1$. Recall that $\lap$ is a compact operator on $L^2(S^1,\rd x)$ and the spectral of $\lap$ is given by $$\bex \mbox{Sp}(\lap)=\sed{-n^2;\ n\in \bbN}. \eex$$ Indeed, let $$\bex e_{2n}(x)=\frac{1}{\sqrt{\pi}}\cos(nx),\quad e_{2n+1}(x)=\frac{1}{\sqrt{\pi}} \sin (nx),\quad n\in\bbN,\ x\in S^1. \eex$$ Then $$\bex \lap e_{2n}=-n^2 e_{2n},\quad \lap e_{2n+1}=-n^2e_{2n+1},\quad \forall\ n\in\bbN. \eex$$ The set $\sed{e_n}$ consists of a complete orthonormal basis of $L^2(S^1,\rd x)$. Write $$\bex W(t,x)=\sum_{n=1}^\infty W_n(t)e_n(x), \eex$$ where $W_n(t)$ are i.i.d Brownian motion on $\bbR^1$.
(a) Let $$\bex X_t(\cdot) =u(t,\cdot)\in L^2(S^1,\rd x). \eex$$ Prove that $X_t$ satisfies the Ornstein-Uhlenbeck SDE on $L^2(S^1,\rd x)$: $$\bex \rd X_t=\lap X_t+\rd W_t, \eex$$ and $\dps{W_t=\sum_{n=0}^\infty W_n(t)e_n}$ is the cylinder Brownian motion on $L^2(S^1,\rd x)$.
(b) Let $\dps{u(t,x)=\sum_{n\in \bbN} u_n(t)e_n(x)}$ be the orthogonal decomposition of $u(t,\cdot)$ in $L^2(S^1,\rd x)$. Prove that $u_n(t)$ satisfies the Langevin SDE on $\bbR$: $$\bex \rd u_n(t)=-n^2 u_n(t)\rd t+\rd W_n(t), \eex$$ and solve this Langevin SDE with initial condition $u_n(0)=u_n\in \bbR$.
© Find the mild solution to the SPDE \eqref{1} with initial condition $\dps{u(0,x)=\sum_{n=0}^\infty u_ne_n(x)}$ for $\dps{\sum_{n=0}^\infty \sev{u_n}^2<+\infty}$.
(d) Recall that the domain of $\lap$ is given by $$\bex H_0=\left\{u=\sum_{n=1}^\infty u_ne_n\in L^2(S^1,\rd x);\ u_n=\sef{u,e_n},\right.\\ \left.\mbox{ and } \sum_{n=1}^\infty n^2 \sev{u_n}^2<\infty\right\} . \eex$$ Let $$\bex \rd \mu(u)=\prod_{n=1}^\infty \frac{n}{\sqrt{2\pi}} \mbox{exp}\sez{-\frac{n^2\sev{u_n}^2}{2}}\rd u_n. \eex$$ Prove that $\mu$ is a Gaussian measure on $(H,\calB(H))$ with mean zero and with covariance matrix $Q=\sex{q_{ij}}_{\bbN\times\bbN}$ with $$\bex q_{ij}=\frac{1}{i^2}\delta_{ij}, \eex$$ i.e., $\mu=\calN(0,Q)$. Formally we write $$\bex Q=\sex{-\lap}^{-1},\quad \mu=\calN(0,\sex{-\lap}^{-1}). \eex$$
(e) Prove that $\mu$ is an invariant measure for the Ornstein-Uhlenbeck processs $X_t$ on $L^2(S^1,\rd x)$.
(f) (Not required) Prove that $\mu$ is the unique invariant measure for the Ornstein-Uhlenbeck process $X_t$ on $L^2(S^1,\rd x)$.
可压 Navier-Stokes 方程
1. Consider the compressible fluid flow with damping: $$\bex \left\{\ba{ll} \p_t\rho+\Div(\rho\bbu)=0,\\ \p_t(\rho\bbu)+\Div\sex{\rho\bbu\otimes\bbu} +\n p=-\rho\bbu. \ea\right. \eex$$ Can this system satisfy Kawashima's condition?
2. Follow the similar analysis for Lemma 2.1 to prove (2.18) in Proposition 2.2.
3. Give the details of the proof of Lemma 3.1.
4. Give the details of the proof of Theorem 5.3.
5. Give the complete proof of Lemmas 6.4 and 6.5.
几何分析 [参考答案链接]
1.(15') 设 $R(X,Y):\ \calX(M)\to \calX(M)$ 为曲率, 求证:
(1) $R(X,Y)(fZ_1+gZ_2) =fR(X,Y)Z_1+gR(X,Y)Z_2$, $\forall\ X,Y,Z_1,Z_2\in \calX(M), f,h\in C^\infty (M)$;
(2) $R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=0$, $\forall\ X,Y,Z\in \calX(M)$.
2.(10') 设 $V(t),\ J(t)$ 是沿最短测地线 $\gamma(t),\ t\in [0,1]$ 的向量场, 它们满足 $$\bex V(t)\perp \dot\gamma(t),\quad J(t)\perp \dot\gamma(t),\quad V(0)=J(0),\quad V(1)=J(1), \eex$$ 且 $J(t)$ 是 Jacobi 场, 求证: $$\bex I(J,J)\leq I(V,V), \eex$$ 其中 $I$ 为 $\gamma$ 上的指标形式.
3.(10') 设 $\gamma(t):\ (-\infty,+\infty)\to M$ 为一条测地直线, 相应地记 $$\bex \gamma_+=\gamma|_{[0,+\infty)},\quad \gamma_-=\gamma|_{(-\infty,0]} \eex$$ 及两 Busemann 函数 $$\bex B_{\gamma_+}(x)=\lim_{t\to+\infty}\sez{d(x,\gamma(t))-t}; \eex$$ $$\bex B_{\gamma_-}(x)=\lim_{t\to-\infty}\sez{d(x,\gamma(t))+t}. \eex$$ 求证: $$\bex B_{\gamma_+}+B_{\gamma_-}=0,\quad\mbox{在 } \gamma \mbox{ 上}; \eex$$ $$\bex B_{\gamma_+}+B_{\gamma_-}\geq 0,\quad\mbox{在 } M \mbox{ 上}. \eex$$
4.(15') 设 $M$ 为紧流形, 再设 $g_{ij}(t)$ 满足 Ricci 流, 且 $f(t),\tau(t)$ 满足 $$\bex \frac{\p }{\p t}f=-\lap f+\sev{\n f}^2-R+\frac{n}{2\tau},\quad \frac{\p }{\p t}\tau =-1. \eex$$ 求证:
(1) $$\bex \frac{\rd}{\rd t}\int_M \sex{4\pi \tau}^{-\frac{n}{2}} e^{-f}\, \rd vol_{g_{ij}}=0; \eex$$
(2) $$\bex & &\frac{\rd }{\rd x}\int_M \sez{\tau \sex{R+\sev{\n f}^2} +f-n}(4\pi^\tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}\\ & &=\int_M 2\tau \sev{R_{ij}+\n_i\n_j f-\frac{1}{2\tau}g_{ij}}^2 (4\pi \tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}. \eex$$
[家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何的更多相关文章
- [家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子
Navier-Stokes equations 1 Let $\omega$ be a domain in $\bbR^3$, complement of a compact set $\mathca ...
- [家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性
1. 方程 考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \ ...
- [家里蹲大学数学杂志]第047期18 世纪法国数学界的3L
1 Lagrange---78岁 约瑟夫·拉格朗日, 全名约瑟夫·路易斯·拉格朗日 (Joseph-Louis Lagrange 1735~1813) 法国数学家.物理学家. 1736年1月25日生于 ...
- [家里蹲大学数学杂志]第237期Euler公式的美
1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a. $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b. $i$: 虚数单位 $=\sqr ...
- [家里蹲大学数学杂志]第041期中山大学数计学院 2008 级数学与应用数学专业《泛函分析》期末考试试题 A
1 ( 10 分 ) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X ...
- [家里蹲大学数学杂志]第053期Legendre变换
$\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛 ...
- [家里蹲大学数学杂志]第056期Tikhonov 泛函的变分
设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov ...
- [家里蹲大学数学杂志]第235期$L^p$ 调和函数恒为零
设 $u$ 是 $\bbR^n$ 上的调和函数, 且 $$\bex \sen{u}_{L^p}=\sex{\int_{\bbR^n}|u(y)|^p\rd y}^{1/p}<\infty. \e ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
随机推荐
- MYSQL 5.6中禁用INNODB引擎
并不是所有人都需要INNODB引擎,虽然它弥补了MYSQL缺乏事务支持的毛病,但是它的磁盘性能一直是让人比较担忧的.另外比较老的PHP系统,大多是采用MYISAM引擎在MYSQL建表,似乎INNODB ...
- iOS开发UI篇—在UItableview中实现加载更多功能
一.实现效果 点击加载更多按钮,出现一个加载图示,三秒钟后添加两条新的数据. 二.实现代码和说明 当在页面(视图部分)点击加载更多按钮的时候,主页面(主控制器 ...
- 全真模拟 (1) day1
第一题: 题目大意: 给出N个数的m对关系(a,b)表示a大于b. 每个数至少为100,求这些书最小可能的和. 解题过程: 1.看到这题就想到之前USACO的一道题,那题是N头牛排序,然后给出m对关系 ...
- SSH框架之一详解maven搭建多模块项目
闲来无事,思量着自己搭建一个ssh框架,一来回顾熟悉一下ssh的内容,hibernate还就没用过了,生疏了都.二来整合一下,将其他掌握的和正在学习的框架核技术糅合到一起,就当是做一个demo练手了. ...
- 向mysql workbench中导入.sql文件
mysql workbench用的不多,前段时间装了一下,然后用了一下,感觉操作比dbdesigner4要更人性化一点.其中二个方面做了改进,让我觉得很爽. 第一,就是端口可以修改了,以前就是定死33 ...
- MagicalRecord 多表关联数据操作
最近在使用MagicalRecord做数据持久层CoreData的操作库,今天做了一个多表关联数据的操作,整理了一个demo,特此记录一下. 关于如何使用Cocopads 和 MagicalRecor ...
- javaweb---html标签
img标签
- 电子词典的相关子函数db.c程序
整个电子词典是分块做的:包含的Dic_Server.c,Dic_Client.c,db.c,query.c,xprtcl.c,dict.h,xprtcl.h,dict.txt(单词文件) 下面是db. ...
- Multiply game_线段树
Problem Description Tired of playing computer games, alpc23 is planning to play a game on numbers. B ...
- 【转载】知乎答案----孙志岗----Google 发布了程序员养成指南,国内互联网巨头是否也有类似的指南和课程推荐
国内公司在复制国外商业模式的同时,也应复制人家的社会担当.所以,来答题了!就参考 Google 的框架,列一下中文的课程.大体上在线学完一个计算机专业,是基本不成问题的.但是,这不意味着你可以不上大学 ...