[家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何
随机偏微分方程
Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probability space satisfying the usual conditions.
1. Recall the following results:
a) The Doob maximal inequality: if $(N_t)$ is a non-negative $\calF_t$-submartingale with $N_0=0$, then for $1<p<\infty$, $$\bex E\sez{\sup_{0\leq t\leq T}\sev{N_t}^p} \leq \sex{\frac{p}{p-1}}^p E\sez{\sev{N_T}^p}. \eex$$
b) The set $\calS$ of simple processes is dense in the Hilbert space $\sex{\calH,\ \sen{\cdot}_{\calH}}$, where $$\bex \calS:=\left\{\xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t):\ 0=t_0<t_1<\cdots<t_n\leq T,\right.\\ \left.\xi_k\in\calF_{t_k},\ \sup_k\sen{\xi_k}_\infty<\infty\right\}, \eex$$ and $$\bex \calH:=\left\{H:\ [0,T]\times\Omega \to \bbR \mbox{ is continuous and } \calF_t\mbox{-adapted}:\right.\\ \left. \sen{H}_{\calH}^2 := E\sez{\int_0^T\sev{H(s)}^2\rd s}<\infty\right\}. \eex$$ Set $$\bex \calM:=\left\{ M=(M_t)_{t\in [0,T]} \mbox{ is continuous } \calF_t\mbox{-martingales such that } \right.\\ \left. \sen{M}_\calM^2 :=\sup_{0\leq t\leq T} E\sez{\sev{M_t}^2} <+\infty \right\}. \eex$$ Then $(\calM,\sen{\cdot}_\calM)$ is a Hilbert space. Let $\xi:\ [0,T]\times \Omega\to \bbR$ be the simple process given by $$\bex \xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t), \eex$$ where $0=t_0<t_1<\cdots<t_n=T$, and $\xi_k\in \calF_{t_k}$ such that $\dps{\sup_k \sev{\xi_k}<\infty}$. Define $$\bex M_t=\int_0^t\xi_k\rd W_s :=\sum_{k=0}^n \xi_k\sex{W_{t_{k+1}\wedge t-W_{t_k\wedge t}}}, \eex$$
a) Prove that $M_t$ is a continuous $\calF_t$-martingale.
b) Prove the It\^o's isometry identity: $$\bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t\sev{\xi_s}^2\rd s}. \eex$$
c) Using the Doob maximal inequality, prove that $$\bex E\sez{\sup_{0\leq t\leq T} \sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{\xi_s}^2\rd s}. \eex$$
d) Given $H\in \calH$, let $H_n\in \calS$ be a sequence such that $\sen{H_n-H}_{\calH}\to 0$ as $n\to\infty$. Prove that $\dps{M_t^n =\int_0^t H_n(s)\rd W_s}$ is a Cauchy sequence in $\sex{\calM,\sen{\cdot}_\calM}$. Let $M$ be the limit of $\sed{M_n(t);\ t\in [0,T]}$ in $\sex{\calM,\sen{\cdot}_\calM}$. Prove that this limit does not depend on the choice of the sequence $H_n$ which tends to $H$ in $\sex{\calH,\sen{\cdot}_\calH}$. Denote by $\dps{M_t:=\int_0^t H(s)\rd W_s}$, i.e. $$\bex \int_0^t H(s)\rd W_s =\lim_{n\to\infty} \int_0^t H_n(s)\rd W_s,\mbox{ in } \sex{\calM,\sen{\cdot}_\calM}. \eex$$
e) Prove that $\dps{M_t=\int_0^t H(s)\rd W_s}$ is a $\calF_t$-martingale and satisfies $$\bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t \sev{H(s)}^2\rd s}, \eex$$ and $$\bex E\sez{\sup_{0\leq t\leq T}\sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{H(s)}^2\rd s}. \eex$$
f) Using the Borel-Cantelli lemma, prove that $ P$-a.s., $M=(M_t)\in C([0,T];\bbR)$.
2. Consider the following SDE on $\bbR^m$: $$\bex \rd X_t=\rd W_t-\n V(X_t)\rd t,\quad X_0=x, \eex$$ where $V\in C_b^2(\bbR^m)$. Fix $T>0$. Suppose that $u(t,x)\in C_b^{1,2}([0,T]\times\bbR^m,\bbR)$ is a solution of the heat equation $$\bex \left\{\ba{ll} \frac{\p u}{\p t}(t,x) =\frac{1}{2}\lap u(t,x) -\sef{\n V(x),\n u(t,x)},&\mbox{in }[0,T)\times \bbR^m,\\ u(0,x)=f(x),&x\in \bbR^m, \ea\right. \eex$$ where $f\in C_b(\bbR^m)$. Applying It\^o's formula to $u(T-t,X_t)$, prove that $$\bex u(t,x)= E_x\sez{f(X_t)},\quad \forall\ t\geq 0,\ x\in \bbR^m. \eex$$
3. Consider the following SPDE on $[0,T]\times S^1$: $$\bee\label{1} \frac{\p}{\p t}u(t,x) =\lap u+\dot W(t,x), \eee$$ where $t\in [0,\infty)$ and $x\in S^1=[0,2\pi]$, $\dps{\lap=\frac{\p^2}{\p x^2}}$ is the Laplace operator on $S^1$, and $W(t,x)$ is the space-time white noise on $[0,\infty)\times S^1$. Recall that $\lap$ is a compact operator on $L^2(S^1,\rd x)$ and the spectral of $\lap$ is given by $$\bex \mbox{Sp}(\lap)=\sed{-n^2;\ n\in \bbN}. \eex$$ Indeed, let $$\bex e_{2n}(x)=\frac{1}{\sqrt{\pi}}\cos(nx),\quad e_{2n+1}(x)=\frac{1}{\sqrt{\pi}} \sin (nx),\quad n\in\bbN,\ x\in S^1. \eex$$ Then $$\bex \lap e_{2n}=-n^2 e_{2n},\quad \lap e_{2n+1}=-n^2e_{2n+1},\quad \forall\ n\in\bbN. \eex$$ The set $\sed{e_n}$ consists of a complete orthonormal basis of $L^2(S^1,\rd x)$. Write $$\bex W(t,x)=\sum_{n=1}^\infty W_n(t)e_n(x), \eex$$ where $W_n(t)$ are i.i.d Brownian motion on $\bbR^1$.
(a) Let $$\bex X_t(\cdot) =u(t,\cdot)\in L^2(S^1,\rd x). \eex$$ Prove that $X_t$ satisfies the Ornstein-Uhlenbeck SDE on $L^2(S^1,\rd x)$: $$\bex \rd X_t=\lap X_t+\rd W_t, \eex$$ and $\dps{W_t=\sum_{n=0}^\infty W_n(t)e_n}$ is the cylinder Brownian motion on $L^2(S^1,\rd x)$.
(b) Let $\dps{u(t,x)=\sum_{n\in \bbN} u_n(t)e_n(x)}$ be the orthogonal decomposition of $u(t,\cdot)$ in $L^2(S^1,\rd x)$. Prove that $u_n(t)$ satisfies the Langevin SDE on $\bbR$: $$\bex \rd u_n(t)=-n^2 u_n(t)\rd t+\rd W_n(t), \eex$$ and solve this Langevin SDE with initial condition $u_n(0)=u_n\in \bbR$.
© Find the mild solution to the SPDE \eqref{1} with initial condition $\dps{u(0,x)=\sum_{n=0}^\infty u_ne_n(x)}$ for $\dps{\sum_{n=0}^\infty \sev{u_n}^2<+\infty}$.
(d) Recall that the domain of $\lap$ is given by $$\bex H_0=\left\{u=\sum_{n=1}^\infty u_ne_n\in L^2(S^1,\rd x);\ u_n=\sef{u,e_n},\right.\\ \left.\mbox{ and } \sum_{n=1}^\infty n^2 \sev{u_n}^2<\infty\right\} . \eex$$ Let $$\bex \rd \mu(u)=\prod_{n=1}^\infty \frac{n}{\sqrt{2\pi}} \mbox{exp}\sez{-\frac{n^2\sev{u_n}^2}{2}}\rd u_n. \eex$$ Prove that $\mu$ is a Gaussian measure on $(H,\calB(H))$ with mean zero and with covariance matrix $Q=\sex{q_{ij}}_{\bbN\times\bbN}$ with $$\bex q_{ij}=\frac{1}{i^2}\delta_{ij}, \eex$$ i.e., $\mu=\calN(0,Q)$. Formally we write $$\bex Q=\sex{-\lap}^{-1},\quad \mu=\calN(0,\sex{-\lap}^{-1}). \eex$$
(e) Prove that $\mu$ is an invariant measure for the Ornstein-Uhlenbeck processs $X_t$ on $L^2(S^1,\rd x)$.
(f) (Not required) Prove that $\mu$ is the unique invariant measure for the Ornstein-Uhlenbeck process $X_t$ on $L^2(S^1,\rd x)$.
可压 Navier-Stokes 方程
1. Consider the compressible fluid flow with damping: $$\bex \left\{\ba{ll} \p_t\rho+\Div(\rho\bbu)=0,\\ \p_t(\rho\bbu)+\Div\sex{\rho\bbu\otimes\bbu} +\n p=-\rho\bbu. \ea\right. \eex$$ Can this system satisfy Kawashima's condition?
2. Follow the similar analysis for Lemma 2.1 to prove (2.18) in Proposition 2.2.
3. Give the details of the proof of Lemma 3.1.
4. Give the details of the proof of Theorem 5.3.
5. Give the complete proof of Lemmas 6.4 and 6.5.
几何分析 [参考答案链接]
1.(15') 设 $R(X,Y):\ \calX(M)\to \calX(M)$ 为曲率, 求证:
(1) $R(X,Y)(fZ_1+gZ_2) =fR(X,Y)Z_1+gR(X,Y)Z_2$, $\forall\ X,Y,Z_1,Z_2\in \calX(M), f,h\in C^\infty (M)$;
(2) $R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=0$, $\forall\ X,Y,Z\in \calX(M)$.
2.(10') 设 $V(t),\ J(t)$ 是沿最短测地线 $\gamma(t),\ t\in [0,1]$ 的向量场, 它们满足 $$\bex V(t)\perp \dot\gamma(t),\quad J(t)\perp \dot\gamma(t),\quad V(0)=J(0),\quad V(1)=J(1), \eex$$ 且 $J(t)$ 是 Jacobi 场, 求证: $$\bex I(J,J)\leq I(V,V), \eex$$ 其中 $I$ 为 $\gamma$ 上的指标形式.
3.(10') 设 $\gamma(t):\ (-\infty,+\infty)\to M$ 为一条测地直线, 相应地记 $$\bex \gamma_+=\gamma|_{[0,+\infty)},\quad \gamma_-=\gamma|_{(-\infty,0]} \eex$$ 及两 Busemann 函数 $$\bex B_{\gamma_+}(x)=\lim_{t\to+\infty}\sez{d(x,\gamma(t))-t}; \eex$$ $$\bex B_{\gamma_-}(x)=\lim_{t\to-\infty}\sez{d(x,\gamma(t))+t}. \eex$$ 求证: $$\bex B_{\gamma_+}+B_{\gamma_-}=0,\quad\mbox{在 } \gamma \mbox{ 上}; \eex$$ $$\bex B_{\gamma_+}+B_{\gamma_-}\geq 0,\quad\mbox{在 } M \mbox{ 上}. \eex$$
4.(15') 设 $M$ 为紧流形, 再设 $g_{ij}(t)$ 满足 Ricci 流, 且 $f(t),\tau(t)$ 满足 $$\bex \frac{\p }{\p t}f=-\lap f+\sev{\n f}^2-R+\frac{n}{2\tau},\quad \frac{\p }{\p t}\tau =-1. \eex$$ 求证:
(1) $$\bex \frac{\rd}{\rd t}\int_M \sex{4\pi \tau}^{-\frac{n}{2}} e^{-f}\, \rd vol_{g_{ij}}=0; \eex$$
(2) $$\bex & &\frac{\rd }{\rd x}\int_M \sez{\tau \sex{R+\sev{\n f}^2} +f-n}(4\pi^\tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}\\ & &=\int_M 2\tau \sev{R_{ij}+\n_i\n_j f-\frac{1}{2\tau}g_{ij}}^2 (4\pi \tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}. \eex$$
[家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何的更多相关文章
- [家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子
Navier-Stokes equations 1 Let $\omega$ be a domain in $\bbR^3$, complement of a compact set $\mathca ...
- [家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性
1. 方程 考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \ ...
- [家里蹲大学数学杂志]第047期18 世纪法国数学界的3L
1 Lagrange---78岁 约瑟夫·拉格朗日, 全名约瑟夫·路易斯·拉格朗日 (Joseph-Louis Lagrange 1735~1813) 法国数学家.物理学家. 1736年1月25日生于 ...
- [家里蹲大学数学杂志]第237期Euler公式的美
1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a. $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b. $i$: 虚数单位 $=\sqr ...
- [家里蹲大学数学杂志]第041期中山大学数计学院 2008 级数学与应用数学专业《泛函分析》期末考试试题 A
1 ( 10 分 ) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X ...
- [家里蹲大学数学杂志]第053期Legendre变换
$\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛 ...
- [家里蹲大学数学杂志]第056期Tikhonov 泛函的变分
设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov ...
- [家里蹲大学数学杂志]第235期$L^p$ 调和函数恒为零
设 $u$ 是 $\bbR^n$ 上的调和函数, 且 $$\bex \sen{u}_{L^p}=\sex{\int_{\bbR^n}|u(y)|^p\rd y}^{1/p}<\infty. \e ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
随机推荐
- iOS开发多线程篇—GCD的常见用法
iOS开发多线程篇—GCD的常见用法 一.延迟执行 1.介绍 iOS常见的延时执行有2种方式 (1)调用NSObject的方法 [self performSelector:@selector(run) ...
- 1410. Crack
http://acm.timus.ru/problem.aspx?space=1&num=1410 题目倒是不难,水题DP 就是题意理解起来有点困难,意思就是给你一段话,提取里面的单词 单词有 ...
- Spring之JDBC模板jdbcTemplate
要使用Jdbctemplate 对象来完成jdbc 操作.通常情况下,有三种种方式得到JdbcTemplate 对象. 第一种方式:我们可以在自己定义的DAO 实现类中注入一个Da ...
- py 抓取中文网址
- 建筑行业如何用BPM替换OA?
2015年4月,K2正式与上海水石建筑规划设计有限公司签约. 为提高公司运作流程的效率,有效的对各流程的运作管理和优化,降低成本,同时提高公司的资金管理水平,水石公司利用K2系统作为整个公司流程的管理 ...
- python mysql 更新和插入数据无效
注意,在删除和增加后必须执行conn.commit()才有效,否则操作无效.
- NuSOAP与PHPRPC比较(转)
因为看到有人问 Nusoap 和 PHPRPC 的比较,为了让大家能够更清楚地了解 Nusoap 和 PHPRPC 的关系,所以在这里做一个简要的说明性介绍,所写的内容也不是面面俱到的,只写了一些主要 ...
- SQL.WITH AS.公用表表达式(CTE)
一.WITH AS的含义 WITH AS短语,也叫做子查询部分(subquery factoring),可以让你做很多事情,定义一个SQL片断,该SQL片断会被整个SQL语句所用到.有的时候,是 ...
- golang flag包简单例子
package main import ( "flag" "fmt" ) var workers int; func main() { flag.IntVar( ...
- BZOJ 4326 树链剖分+二分+差分+记忆化
去年NOIP的时候我还不会树链剖分! 还是被UOJ 的数据卡了一组. 差分的思想还是很神啊! #include <iostream> #include <cstring> #i ...