1076: [SCOI2008]奖励关

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1602  Solved: 891
[Submit][Status][Discuss]

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【数据规模】
1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。

Source

Solution

思路很好的一道题

一开始看到,打算用bool数组记录从属情况,看数据范围,感觉一眼状压,就开始搞

然而顺推并推不出来

后来明白,顺推产生的状态最后会极多,然后还无法判断最优的,所以不行

所以正解是倒推

f[i][j]表示第i个宝物,已选状态为j,那么最后结果就是f[1][0]

至于转移的过程,枚举每个物品,如果当前已选限制物品则$f[i][j]+=max(f[i+1][j],f[i+1][j|(1<<(l-1))]+p[l])$

否则$f[i][j]+=f[i+1][j]$

因为所求为期望,比较显然最后$f[i][j]/=n$

Code

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
int k,n,p[];
int xz[(<<)+];
double f[][(<<)+];
void dp()
{
for (int i=k; i>=; i--)
for (int j=; j<=(<<n)-; j++)
{
for (int l=; l<=n; l++)
if ((xz[l]&j)==xz[l])
f[i][j]+=max(f[i+][j],f[i+][j|(<<(l-))]+p[l]);
else f[i][j]+=f[i+][j];
f[i][j]/=n;
}
}
int main()
{
k=read(),n=read();
for (int i=,x; i<=n; i++)
{p[i]=read();x=read(); while (x!=) xz[i]+=(<<(x-)),x=read();}
dp();
printf("%.6lf\n",f[][]);
return ;
}

【BZOJ-1076】奖励关 概率与期望 + 状态压缩DP的更多相关文章

  1. BZOJ 1076 奖励关(状压期望DP)

    当前得分期望=(上一轮得分期望+这一轮得分)/m dp[i,j]:第i轮拿的物品方案为j的最优得分期望 如果我们正着去做,会出现从不合法状态(比如前i个根本无法达到j这种方案),所以从后向前推 如果当 ...

  2. bzoj 1076 奖励关 状压+期望dp

    因为每次选择都是有后效性的,直接dp肯定不行,所以需要逆推. f[i][j]表示从第i次开始,初始状态为j的期望收益 #include<cstdio> #include<cstrin ...

  3. BZOJ 1076 奖励关 状态压缩DP

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1076 题目大意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里, ...

  4. [BZOJ]1076 奖励关(SCOI2008)

    终于又一次迎来了一道期望DP题,按照约定,小C把它贴了出来. Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃 ...

  5. BZOJ 1076 奖励关

    注意几点: 1.为什么要逆推?由此状态可以轻易算出彼状态是否可行,而彼状态却无法轻易还原为此状态. 2.为什么可以逆推?假设时光倒流了....23333 3.注意位运算的准确,大胆写方程. #incl ...

  6. scoi 2008 && bzoj 1076 奖励关

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3223 思路:15?好,状压,OK. 这是转移方程 if((s[k]&j)==s[k] ...

  7. 【bzoj1076】[SCOI2008]奖励关 期望dp+状态压缩dp

    题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...

  8. 洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP

    洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米 ...

  9. BZOJ 1087状态压缩DP

    状态压缩DP真心不会写,参考了别人的写法. 先预处理出合理状态, 我们用二进制表示可以放棋子的状态,DP[I][J][K]:表示现在处理到第I行,J:表示第I行的状态,K表示现在为止一共放的棋子数量. ...

随机推荐

  1. js会员头像上传拖动处理头像类

    js会员头像上传拖动处理头像类 点击下载源码文件

  2. CoreAnimation笔记

    核心动画继承结构 CoreAnimation Core Animation是直接作用在CALayer上的(并非UIView上)非常强大的跨Mac OS X和iOS平台的动画处理API,Core Ani ...

  3. 布局 - layout

    示例 <div id="cc" class="easyui-layout" style="width:600px;height:400px;&q ...

  4. 【转】Sql Server参数化查询之where in和like实现详解

    转载至:http://www.cnblogs.com/lzrabbit/archive/2012/04/22/2465313.html 文章导读 拼SQL实现where in查询 使用CHARINDE ...

  5. [转]一篇很全面的freemarker教程

    copy自http://demojava.iteye.com/blog/800204 以下内容全部是网上收集: FreeMarker的模板文件并不比HTML页面复杂多少,FreeMarker模板文件主 ...

  6. C# 6.0

    C# 6.0 的新语法特性   回眸 C# 的前世今生 - 见证 C# 6.0 的新语法特性 序 目前最新的版本是 C# 7.0,VS 的最新版本为 Visual Studio 2017 RC,两者都 ...

  7. noi题库(noi.openjudge.cn) 1.7编程基础之字符串T21——T30

    T21:单词替换 描述 输入一个字符串,以回车结束(字符串长度<=100).该字符串由若干个单词组成,单词之间用一个空格隔开,所有单词区分大小写.现需要将其中的某个单词替换成另一个单词,并输出替 ...

  8. velocity模板引擎学习(1)

    velocity与freemaker.jstl并称为java web开发三大标签技术,而且velocity在codeplex上还有.net的移植版本NVelocity,(注:castle团队在gith ...

  9. lecture3-线性神经元和算法

    Hinton第三课 这节课主要是介绍NN的输出端常用的神经元,然后重点是说明怎么使用BP来计算偏导数,在Hinton这一课中,他提供了他1986年参与写的<并行分布处理>一书的第8章,49 ...

  10. ModernUI教程:主题资源引用

    已经完成的主题资源列表 提示:请关注Modern UI的开发工作,资源文件可能在演进版本中新增和删除. 资源列表可以去访问原文,原文可复制,该表未改动原文. 查看目录