这道题很有趣,暴搜的时间复杂度太过于凶残O(K*(2^n)^2)(K的意思是大常数),不过作为提高组T4,这道题数据范围太小了,感觉哪怕是离谱的暴搜也能过。

再加上一时半会没想好多项式时间复杂度的正解DP,就搞了一个四不像出来,第一次走用搜索来实现第二次走用记搜来实现,这样时间复杂度就是O((2^n)*(n^2)),仍然很凶残但毕竟数据太水了。这个做法很简单,对于现在的我来说简直是基本功了,五十行代码很快便写好然后轻松调了调就AC了

但显然我还是要想想正解的,初步想了一下没想出来便看了眼题解,没看懂题解的思路讲解但是看了眼代码后,瞬间想到了以下内容便理解了整个过程。

此前考虑到第一次搜索会影响第二次搜索而第一次搜索后的结果用状态来描述就要用n个坐标这会导致dp的时间复杂度变为n^n从而使得dp毫无意义。

但是,后来意识到如果同步处理两次移动,用一个四个坐标(即两人坐标)的dp来刻画一个状态,这是他们走的第几步即他们所在那一圈这两个数据显然都隐含在坐标中而且由于状态转移过程中不会改变两人总步数的差且结尾状态两人总步数的差是0!!!这就导致我需要求的那部分的dp两人总步数的差始终为0!!!也就是说两人始终走过总路程相同,他们在同一条“带”上,这意味着根本不需要存某个人走过了哪些步来一一对照,只需要在每一步考虑他们是否在同一带上选择了同一格即可!如果选择了同一格,那去掉重复加了的得分即可。

甚至,由于两人总路程相同,而总路程+两人x坐标可以推导出两人y坐标,所以用总路程+两个x坐标就可以足以刻画状态,就这般,三维DP即可解决问题!

妙哉

思路已经完全清晰,没什么可说的了,也没什么浪费时间写出来的必要了,毕竟想明白以上内容后想写简直太简单了,在这里复制一段别人写的四维dp代码和三维dp代码,仅供参考。

O((2^n)*(n^2))-Code

#include <iostream>
#include <cstring> using namespace std;
int ans,dp[10][10],N,x,y,z,a[10][10],b[10][10];
int dpdfs(int x,int y)
{
if(x<1||y<1)return -99999999;
if(x==1&&y==1)return dp[1][1]=0;
if(dp[x][y]!=-1)return dp[x][y];
int DFS=max(dpdfs(x-1,y),dpdfs(x,y-1));
if(b[x][y]==0)DFS+=a[x][y];
return dp[x][y]=DFS;
}
void dfs(int x,int y,int l)
{
if(x>N||y>N)return;
if(x==N&&y==N)
{
memset(dp,-1,sizeof(dp));
ans=max(ans,l+dpdfs(N,N));
return;
}
b[x+1][y]=1;dfs(x+1,y,l+a[x+1][y]);b[x+1][y]=0;
b[x][y+1]=1;dfs(x,y+1,l+a[x][y+1]);b[x][y+1]=0;
return;
} int main()
{
cin>>N;
while(cin>>x>>y>>z)
{
if(x==0&&y==0&&z==0) break;
a[x][y]=z;
}
b[1][1]=1;
dfs(1,1,a[1][1]);
cout<<ans<<endl;
return 0;
}

O(n^4)-Code

#include<bits/stdc++.h>
using namespace std;
const int maxn=10;
int a[maxn][maxn],f[maxn<<1][maxn][maxn],n;
int main()
{
scanf("%d",&n);
memset(a,0,sizeof(a));
while (1)
{
int x,y,z;
scanf("%d %d %d",&x,&y,&z);
if (x==0 && y==0 && z==0) break;
a[x][y]=z;
}
f[0][1][1]=a[1][1];//初始化
for (int i=1;i<=2*n-2;i++)//因为最多走2n-2步,x1+x2=i+2
for (int x1=1;x1<=n;x1++)
for (int x2=1;x2<=n;x2++)
{
int y1=i+2-x1,y2=i+2-x2;//算出纵坐标
if (y1<1 || y2<1) continue;//判断是否越界
f[i][x1][x2]=max(f[i-1][x1][x2],max(f[i-1][x1-1][x2],max(f[i-1][x1][x2-1],f[i-1][x1-1][x2-1])))+a[x1][y1]+a[x2][y2];//上面说的转移
if (x1==x2 && y1==y2) f[i][x1][x2]-=a[x1][y1]; //如果走到同一个点就减一次
}
printf("%d",f[n*2-2][n][n]);//目标状态
return 0;
}

O(n^3)-Code

#include<bits/stdc++.h>
using namespace std;
const int maxn=10;
int a[maxn][maxn],f[maxn<<1][maxn][maxn],n;
int main()
{
scanf("%d",&n);
memset(a,0,sizeof(a));
while (1)
{
int x,y,z;
scanf("%d %d %d",&x,&y,&z);
if (x==0 && y==0 && z==0) break;
a[x][y]=z;
}
f[0][1][1]=a[1][1];//初始化
for (int i=1;i<=2*n-2;i++)//因为最多走2n-2步,x1+x2=i+2
for (int x1=1;x1<=n;x1++)
for (int x2=1;x2<=n;x2++)
{
int y1=i+2-x1,y2=i+2-x2;//算出纵坐标
if (y1<1 || y2<1) continue;//判断是否越界
f[i][x1][x2]=max(f[i-1][x1][x2],max(f[i-1][x1-1][x2],max(f[i-1][x1][x2-1],f[i-1][x1-1][x2-1])))+a[x1][y1]+a[x2][y2];//上面说的转移
if (x1==x2 && y1==y2) f[i][x1][x2]-=a[x1][y1]; //如果走到同一个点就减一次
}
printf("%d",f[n*2-2][n][n]);//目标状态
return 0;
}

以上、

P1004-DP【绿】的更多相关文章

  1. 「疫期集训day4」硝烟

    那真是一阵恐怖的炮击(that boomed booms),响亮的炮音(that noise),滚滚的硝烟(that smoke),熊熊的火焰在围绕着我们前进...小心前进(go and be car ...

  2. 洛谷 P1004 方格取数 【多进程dp】

    题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...

  3. 洛谷 - P1004 - 方格取数 - 简单dp

    https://www.luogu.org/problemnew/show/P1004 这道题分类到简单dp但是感觉一点都不简单……这种做两次的dp真的不是很懂怎么写.假如是贪心做两次,感觉又不能证明 ...

  4. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  5. P1004 方格取数(四维dp)

    P1004 方格取数 思路如下 这题是看洛谷大佬的思路才写出来的,所以我会把大佬的思路展示如下: 1⃣️:我们可以找到一个叫思维dp的东西,dp[i][j][k][l],其中前两维表示一个人从原点出发 ...

  6. P1004 方格取数——奇怪的dp

    P1004 方格取数 题目描述 设有 \(N\times N\) 的方格图 \((N\leq 20)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 \(0\) .如下图所示(见样例) ...

  7. 洛谷P1004 方格取数-四维DP

    题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...

  8. Luogu P1004/P1006 方格取数/传纸条 【棋盘Dp】 By cellur925

    我明明记得写过这篇啊qwq为什么会搞丢 两题几乎一样. 如果再拓展到k条路,就要用网络流跑了,本蒟现在还不会. 我们容易想到四维dp,但是有一种更好的方法. 首先,先从左上到右下.再从右下到左上可以近 ...

  9. P1004 方格取数[棋盘dp]

    题目来源:洛谷 题目描述 设有N×N的方格图(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 ...

  10. 洛谷 P1004 方格取数 【多线程DP/四维DP/】

    题目描述(https://www.luogu.org/problemnew/show/1004) 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0. ...

随机推荐

  1. 吉特日化MES & HttpClient基础连接已经关闭: 连接被意外关闭

    在吉特日化MES调用某公司AGV平台下发任务的时候,使用HttpClient 进行POST请求,出现如下异常: HttpClient基础连接已经关闭: 连接被意外关闭  , 之前已经使用HTTPCli ...

  2. k8s~动态生成pvc和pv

    有时,我们不想手动建立pv和pvc,这时,我们可以通过strongClass存储类来帮我们实现,动态建立pvc,并动态为它分配pv存储空间,我们以nfs为例,说一下动态分配在nfs存储截至上建立pv的 ...

  3. SQL注入上传文件获取shell

    SQL注入写文件的三个必要条件 Web目录有读写权限: 当目标网站的Web目录具有读写权限时,攻击者可以通过注入恶意SQL语句将恶意文件写入服务器上的Web目录. 知道文件的绝对路径: 攻击者需要知道 ...

  4. 2021-01-14:timsort是什么,如何用代码实现?

    福哥答案2021-01-14: 答案来自此链接: 介绍: timsort是一种混合.稳定高效的排序算法,源自合并排序和插入排序,旨在很好地处理多种真实数据.它由Tim Peters于2002年实施使用 ...

  5. 19、Flutter StatelessWidget 、 StatefulWidget

    在Flutter中自定义组件其实就是一个类,这个类需要继承StatelessWidget  /  StatefulWidget. StatelessWidget是无状态组件,状态不可变的widget ...

  6. 互联网公司五八同城(58.com)研发效能团队建设之路

    这是「二三线中型互联网公司研发效能团队规模.职能划分和优劣势分析」的一个铺垫,一个背景.因为如果不写此篇,大家可能仅得到一些经验总结,恐怕难以获取当时为啥做出那个决定.做决定要有上下文环境,要有场景才 ...

  7. 华为云HBase冷热分离最佳实践

    本文分享自华为云社区<华为云HBase 冷热分离最佳实践>,作者:pippo. HBase介绍 HBase是Hadoop Database的简称,是建立在Hadoop文件系统之上的分布式面 ...

  8. 统一元数据,数据湖Catalog让大数据存算分离不再是问题

    摘要:为了解决现阶段大数据存算分离痛点问题,华为云大数据推出重量级数据湖Catalog服务. 1 背景 随着5G.IoT等技术的发展,企业积累了越来越多的数据,需要激发更多的数据价值变现.传统大数据平 ...

  9. 想发自己的NFT,你要先搞清楚这6个问题

    摘要:NFT是Web3世界中标记数据资产独特性的标识,是数据权益的载体. 本文分享自华为云社区<加密数字艺术NFT背后你关心的六个问题>,作者: 薛腾飞 . Connect Wallet ...

  10. 跟我学Python图像处理丨5种图像阈值化处理及算法对比

    摘要:本篇文章主要讲解Python调用OpenCV实现图像阈值化处理操作,包括二进制阈值化.反二进制阈值化.截断阈值化.反阈值化为0.阈值化为0. 本文分享自华为云社区<[Python图像处理] ...