聊聊Flink必知必会(五)
从源码中,根据关键的代码,梳理一下Flink中的时间与窗口实现逻辑。
WindowedStream
对数据流执行keyBy()操作后,再调用window()方法,就会返回WindowedStream,表示分区后又加窗的数据流。如果数据流没有经过分区,直接调用window()方法则会返回AllWindowedStream。
如下:
// 构造函数
public WindowedStream(KeyedStream<T, K> input, WindowAssigner<? super T, W> windowAssigner) {
this.input = input;
this.builder =
new WindowOperatorBuilder<>(
windowAssigner,
windowAssigner.getDefaultTrigger(input.getExecutionEnvironment()),
input.getExecutionConfig(),
input.getType(),
input.getKeySelector(),
input.getKeyType());
}
// KeyedStream类型,表示被加窗的输入流。
private final KeyedStream<T, K> input;
// 用于构建WindowOperator,最终会生成windowAssigner,Evictor,Trigger
private final WindowOperatorBuilder<T, K, W> builder;
在这里面还涉及到一些窗口的基本计算算子,比如reduce,aggregate,apply,process,sum等等.
窗口相关模型的实现
Window
Window类是Flink中对窗口的抽象。它是一个抽象类,包含抽象方法maxTimestamp(),用于获取属于该窗口的最大时间戳。
TimeWindow类是其子类。包含了窗口的start,end,offset等时间概念字段,这里会计算窗口的起始时间:
// 构造函数
public TimeWindow(long start, long end) {
this.start = start;
this.end = end;
}
// timestamp:获取窗口启动时的第一个时间戳epoch毫秒
public static long getWindowStartWithOffset(long timestamp, long offset, long windowSize) {
final long remainder = (timestamp - offset) % windowSize;
// handle both positive and negative cases
if (remainder < 0) {
return timestamp - (remainder + windowSize);
} else {
return timestamp - remainder;
}
}
WindowAssigner
WindowAssigner表示窗口分配器,用来把元素分配到零个或多个窗口(Window对象)中。它是一个抽象类,其中重要的抽象方法为assignWindows()方法,用来给元素分配窗口。
Flink有多种类型的窗口,如Tumbling Window、Sliding Window等。各种类型的窗口又分为基于事件时间或处理时间的窗口。WindowAssigner的实现类就对应着具体类型的窗口。
SlidingEventTimeWindows是WindowAssigner的另一个实现类,表示基于事件时间的Sliding Window。它有3个long类型的字段size、slide和offset,分别表示窗口的大小、滑动的步长和窗口起始位置的偏移量。它对assignWindows()方法的实现如下:
@Override
public Collection<TimeWindow> assignWindows(
Object element, long timestamp, WindowAssignerContext context) {
// Long.MIN_VALUE is currently assigned when no timestamp is present
if (timestamp > Long.MIN_VALUE) {
if (staggerOffset == null) {
staggerOffset =
windowStagger.getStaggerOffset(context.getCurrentProcessingTime(), size);
}
long start =
TimeWindow.getWindowStartWithOffset(
timestamp, (globalOffset + staggerOffset) % size, size);
// 返回构建好起止时间的TimeWindow
return Collections.singletonList(new TimeWindow(start, start + size));
} else {
throw new RuntimeException(
"Record has Long.MIN_VALUE timestamp (= no timestamp marker). "
+ "Is the time characteristic set to 'ProcessingTime', or did you forget to call "
+ "'DataStream.assignTimestampsAndWatermarks(...)'?");
}
}
设置窗口触发器Trigger
@Override
public Trigger<Object, TimeWindow> getDefaultTrigger(StreamExecutionEnvironment env) {
return EventTimeTrigger.create();
}
WindowAssigner与其主要实现类的关系如下:

这些类的含义分别如下
- GlobalWindows:将所有元素分配进同一个窗口的全局窗口分配器。
- SlidingEventTimeWindows:基于事件时间的滑动窗口分配器。
- SlidingProcessingTimeWindows:基于处理时间的滑动窗口分配器。
- TumblingEventTimeWindows:基于事件时间的滚动窗口分配器。
- TumblingProcessingTimeWindows:基于处理时间的滚动窗口分配器。
- EventTimeSessionWindows:基于事件时间的会话窗口分配器。
- ProcessingTimeSessionWindows:基于处理时间的会话窗口分配器。
Trigger
Trigger表示窗口触发器。它是一个抽象类,主要定义了下面3个方法用于确定窗口何时触发计算:
// 每个元素到来时触发
public abstract TriggerResult onElement(T element, long timestamp, W window, TriggerContext ctx) throws Exception;
// 处理时间的定时器触发时
public abstract TriggerResult onProcessingTime(long time, W window, TriggerContext ctx) throws Exception;
// 事件时间的定时器触发时调用
public abstract TriggerResult onEventTime(long time, W window, TriggerContext ctx) throws Exception;
这3个方法的返回结果为TriggerResult对象。TriggerResult是一个枚举类,包含两个boolean类型的字段fire和purge,分别表示窗口是否触发计算和窗口内的元素是否需要清空。
CONTINUE(false, false),
FIRE_AND_PURGE(true, true),
FIRE(true, false),
PURGE(false, true);
TriggerResult(boolean fire, boolean purge) {
this.purge = purge;
this.fire = fire;
}
窗口触发器的实现由用户根据业务需求自定义。Flink默认基于事件时间的触发器为EventTimeTrigger,其三个方法处理如下
@Override
public TriggerResult onElement(
Object element, long timestamp, TimeWindow window, TriggerContext ctx)
throws Exception {
if (window.maxTimestamp() <= ctx.getCurrentWatermark()) {
// 如果水印已经超过窗口,则立即触发
return TriggerResult.FIRE;
} else {
// 注册事件时间定时器
ctx.registerEventTimeTimer(window.maxTimestamp());
return TriggerResult.CONTINUE;
}
}
@Override
public TriggerResult onEventTime(long time, TimeWindow window, TriggerContext ctx) {
return time == window.maxTimestamp() ? TriggerResult.FIRE : TriggerResult.CONTINUE;
}
/*
* 处理时间,窗口不触发计算也不清空内部元素。
*/
@Override
public TriggerResult onProcessingTime(long time, TimeWindow window, TriggerContext ctx)
throws Exception {
return TriggerResult.CONTINUE;
}
Trigger与其主要实现类的继承关系

这些类的含义如下
- CountTrigger:元素数达到设置的个数时触发计算的触发器。
- DeltaTrigger:基于DeltaFunction和设置的阈值触发计算的触发器。
- EventTimeTrigger:基于事件时间的触发器。
- ProcessingTimeTrigger:基于处理时间的触发器。
- PurgingTrigger:可包装其他触发器的清空触发器。
- ContinuousEventTimeTrigger:基于事件时间并按照一定的时间间隔连续触发计算的触发器。
- ContinuousProcessingTimeTrigger:基于处理时间并按照一定的时间间隔连续触发计算的触发器。
windowOperator
从WindowedStream的构造函数中,会生成WindowOperatorBuilder,该类可以返回WindowOperator,这两个类负责窗口分配器、窗口触发器和窗口剔除器这些组件在运行时的协同工作。
对于WindowOperator,除了窗口分配器和窗口触发器的相关字段,可以先了解下面两个字段。
// StateDescriptor类型,表示窗口状态描述符。
private final StateDescriptor<? extends AppendingState<IN, ACC>, ?> windowStateDescriptor;
// 表示窗口的状态,窗口内的元素都在其中维护。
private transient InternalAppendingState<K, W, IN, ACC, ACC> windowState;
窗口中的元素并没有保存在Window对象中,而是维护在windowState中。windowStateDescriptor则是创建windowState所需用到的描述符。
当有元素到来时,会调用WindowOperator的processElement()方法:
public void processElement(StreamRecord<IN> element) throws Exception {
// 分配窗口
final Collection<W> elementWindows = windowAssigner.assignWindows(
element.getValue(), element.getTimestamp(), windowAssignerContext);
...
if (windowAssigner instanceof MergingWindowAssigner) { // Session Window的情况
...
} else {
for (W window: elementWindows) { // 非Session Window的情况
...
// 将Window对象设置为namespace并添加元素到windowState中
windowState.setCurrentNamespace(window);
windowState.add(element.getValue());
triggerContext.key = key;
triggerContext.window = window;
// 获取TriggerResult,确定接下来是否需要触发计算或清空窗口
TriggerResult triggerResult = triggerContext.onElement(element);
if (triggerResult.isFire()) {
ACC contents = windowState.get();
if (contents == null) {
continue;
}
// 触发计算
emitWindowContents(window, contents);
}
if (triggerResult.isPurge()) {
// 清空窗口
windowState.clear();
}
...
}
}
...
}
在处理时间或事件时间的定时器触发时,会调用WindowOperator的onProcessingTime()方法或onEventTime()方法,其中的逻辑与onElement()方法的大同小异。
Watermarks
水位线(watermark)是选用事件时间来进行数据处理时特有的概念。它的本质就是时间戳,从上游流向下游,表示系统认为数据中的事件时间在该时间戳之前的数据都已到达。
Flink中,Watermark类表示水位。
/** Creates a new watermark with the given timestamp in milliseconds. */
public Watermark(long timestamp) {
this.timestamp = timestamp;
}
watermark的生成有两种方式,这里不赘述,主要讲述下基于配置的策略生成watermark的方式。如下的代码是比较常见的配置:
// 分配事件时间与水印
.assignTimestampsAndWatermarks(
// forBoundedOutOfOrderness 会根据事件的时间戳和允许的最大乱序时间生成水印。
// Duration 设置了最大乱序时间为1秒。这意味着 Flink 将允许在这1秒的时间范围内的事件不按照事件时间的顺序到达,这个时间段内的事件会被认为是"有序的"。
WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ofSeconds(1))
// 设置事件时间分配器,从Event对象中提取时间戳作为事件时间
.withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
@Override
public long extractTimestamp(Event element, long recordTimestamp) {
return element.timestamp;
}
}));
在Flink内部,会根据配置的策略调用BoundedOutOfOrdernessWatermarks生成watermark。该类的代码如下:
public class BoundedOutOfOrdernessWatermarks<T> implements WatermarkGenerator<T> {
/** The maximum timestamp encountered so far. */
private long maxTimestamp;
/** The maximum out-of-orderness that this watermark generator assumes. */
private final long outOfOrdernessMillis;
/**
* Creates a new watermark generator with the given out-of-orderness bound.
*
* @param maxOutOfOrderness The bound for the out-of-orderness of the event timestamps.
*/
public BoundedOutOfOrdernessWatermarks(Duration maxOutOfOrderness) {
checkNotNull(maxOutOfOrderness, "maxOutOfOrderness");
checkArgument(!maxOutOfOrderness.isNegative(), "maxOutOfOrderness cannot be negative");
this.outOfOrdernessMillis = maxOutOfOrderness.toMillis();
// start so that our lowest watermark would be Long.MIN_VALUE.
this.maxTimestamp = Long.MIN_VALUE + outOfOrdernessMillis + 1;
}
// ------------------------------------------------------------------------
@Override
public void onEvent(T event, long eventTimestamp, WatermarkOutput output) {
// 每条数据都会更新最大值
maxTimestamp = Math.max(maxTimestamp, eventTimestamp);
}
@Override
public void onPeriodicEmit(WatermarkOutput output) {
// 发送 watermark 逻辑
output.emitWatermark(new Watermark(maxTimestamp - outOfOrdernessMillis - 1));
}
}
onEvent决定每次事件都会取得最大的事件时间更新;onPeriodicEmit则是周期性的更新并传递到下游。
AbstractStreamOperator
WatermarkGenerator接口的调用是在AbstractStreamOperator抽象类的子类TimestampsAndWatermarksOperator中。其生命周期open函数与每个数据到来的处理函数processElement,如下:
@Override
public void open() throws Exception {
super.open();
timestampAssigner = watermarkStrategy.createTimestampAssigner(this::getMetricGroup);
watermarkGenerator =
emitProgressiveWatermarks
? watermarkStrategy.createWatermarkGenerator(this::getMetricGroup)
: new NoWatermarksGenerator<>();
wmOutput = new WatermarkEmitter(output);
watermarkInterval = getExecutionConfig().getAutoWatermarkInterval();
if (watermarkInterval > 0 && emitProgressiveWatermarks) {
final long now = getProcessingTimeService().getCurrentProcessingTime();
getProcessingTimeService().registerTimer(now + watermarkInterval, this);
}
}
@Override
public void processElement(final StreamRecord<T> element) throws Exception {
final T event = element.getValue();
final long previousTimestamp =
element.hasTimestamp() ? element.getTimestamp() : Long.MIN_VALUE;
// 从分配器中提取事件时间戳
final long newTimestamp = timestampAssigner.extractTimestamp(event, previousTimestamp);
element.setTimestamp(newTimestamp);
output.collect(element);
// 调用水印生成器
watermarkGenerator.onEvent(event, newTimestamp, wmOutput);
}
从方法的入参可以看出来 flink 算子间的数据流动是 StreamRecord 对象。它对数据的处理逻辑是什么都不做直接向下游发送,然后调用 onEvent 记录最大时间戳,也就是说:flink 是先发送数据再生成 watermark,watermark 永远在生成它的数据之后。
总结
上面的一系列相关代码,只是冰山一角,暂时只是把关键涉及到的部分捋了一下。最后画个图,展示其大致思路。

聊聊Flink必知必会(五)的更多相关文章
- Android程序员必知必会的网络通信传输层协议——UDP和TCP
1.点评 互联网发展至今已经高度发达,而对于互联网应用(尤其即时通讯技术这一块)的开发者来说,网络编程是基础中的基础,只有更好地理解相关基础知识,对于应用层的开发才能做到游刃有余. 对于Android ...
- 迈向高阶:优秀Android程序员必知必会的网络基础
1.前言 网络通信一直是Android项目里比较重要的一个模块,Android开源项目上出现过很多优秀的网络框架,从一开始只是一些对HttpClient和HttpUrlConnection简易封装使用 ...
- 脑残式网络编程入门(三):HTTP协议必知必会的一些知识
本文原作者:“竹千代”,原文由“玉刚说”写作平台提供写作赞助,原文版权归“玉刚说”微信公众号所有,即时通讯网收录时有改动. 1.前言 无论是即时通讯应用还是传统的信息系统,Http协议都是我们最常打交 ...
- 《SQL必知必会》学习笔记(一)
这两天看了<SQL必知必会>第四版这本书,并照着书上做了不少实验,也对以前的概念有得新的认识,也发现以前自己有得地方理解错了.我采用的数据库是SQL Server2012.数据库中有一张比 ...
- mysql必知必会
春节放假没事,找了本电子书mysql必知必会敲了下.用的工具是有道笔记的markdown文档类型. 下面是根据大纲已经敲完的章节,可复制到有道笔记的查看,更美观. # 第一章 了解SQL## 什么是S ...
- python网络爬虫,知识储备,简单爬虫的必知必会,【核心】
知识储备,简单爬虫的必知必会,[核心] 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到桌 ...
- 关于TCP/IP,必知必会的十个经典问题[转]
关于TCP/IP,必知必会的十个问题 原创 2018-01-25 Ruheng 技术特工队 本文整理了一些TCP/IP协议簇中需要必知必会的十大问题,既是面试高频问题,又是程序员必备基础素养. 一 ...
- msql 必知必会笔记
Edit Mysql 必知必会 第一章 理解SQL 什么是数据库 数据库(database) 保存有组织的数据的容器 什么是表 一组特定类型的数据的结构化清单 什么是模式 数据库和表的布局及特性的 ...
- .NET零基础入门09:SQL必知必会
一:前言 仿佛到了更进一步的时候了,每一个程序员迟早都会遇到数据存储的问题.我们拿什么来存储程序产生的数据?举例来说,用什么来存储我们的打老鼠游戏每次的成绩呢?选择如下: 1:内存中.缺点,退出游戏, ...
- TCP/IP 必知必会的十个问题
本文整理了一些TCP/IP协议簇中需要必知必会的十大问题,既是面试高频问题,又是程序员必备基础素养. 一.TCP/IP模型 TCP/IP协议模型(Transmission Control Protoc ...
随机推荐
- ansible 的特点
ansible的特点 基于Python语言实现 模块化,调用特定的模块,完成特定任务 部署简单,基于python和SSH(默认已安装),yum install 即可,不需要客户端 安全,基于OpenS ...
- Sealos 私有化部署完全指南
Sealos 用了五年的时间从一个 K8s 一键安装工具蜕变成了一个真正的云操作系统,将产品体验提升到了极致,也收获了 10w+ 的社区用户. 一个多月前,Sealos 正式发布了公有云托管版本,社区 ...
- 学习OI两年我到底收获了什么
做一个小小的总结 学习了两年的代码,刚刚要进入高中,留下一点文字给以前的学习做一个总结. 命中注定の邂逅-- 这两年之间,和编程产生了比学习更为低调的羁绊关系(我觉得用这个词语比较合适).编程给我带来 ...
- Unity Shader编辑器工具类ShaderUtil 常用函数和用法
Unity Shader编辑器工具类ShaderUtil 常用函数和用法 Unity的Shader编辑器工具类ShaderUtil提供了一系列函数,用于编译.导入和管理着色器.本文将介绍ShaderU ...
- 修复mbr分区
修复mbr分区 实验条件 1.备份mbr引导扇区到其他磁盘 2.模拟破坏mbr引导扇区 3.引导镜像急救模式进行mbr扇区恢复 实验 1,添加一块新的磁盘 2,分区,查看分区情况 3,格式化,并挂载 ...
- vscode c++食用指南
准备 配置环境为机房的 win10. 首先你需要下载 vscode. 可以从官网下载:https://code.visualstudio.com/Download 配置编译c++ 下载完之后安装好,界 ...
- 针对sarasa-shuffle.woff2加密字体进行解密
本文针对的是类似于sarasa-shuffle.woff2加密字体的一个研究. 字体加密是使用Unicode编码将其映射到不同的字体显示的一种前端显示加密手段.在反爬虫中能够起到较好的效果,爬虫将只能 ...
- 状压DP-学习笔记
状压DP 状压 \(DP\) 是一种基于二进制数的 \(DP\). T1 题目大意 将一个整数 \(N\) 分解成若干个小整数的乘积,满足: 分解出的整数必须来自集合 \(S\). 分解出的整数必须互 ...
- Linux 过滤进程和端口号
IDEA覆盖率测速显示百分比 ctrl + alt + F6 取消勾选 ps - ef | grep java过滤Java进程 netstat -anop | grep 74933 过滤端口号 重命名 ...
- .NET开源最全的第三方登录整合库 - CollectiveOAuth
前言 我相信很多同学都对接过各种各样的第三方平台的登录授权获取用户信息(如:微信登录.支付宝登录.GitHub登录等等).今天给大家推荐一个.NET开源最全的第三方登录整合库:CollectiveOA ...