题目传送门

前置知识

扩展欧拉定理

解法

本题幂塔是有限层的,这里与 luogu P4139 上帝与集合的正确用法 中的无限层幂塔不同,故需要在到达递归边界 \(n+1\) 时进行特殊处理,对于处理 \(\varphi(p)\) 在递归过程中等于 \(1\) 的情况两题基本一致。

回忆扩展欧拉定理中的 \(b\) 和 \(\varphi(p)\) 的关系,如果我们按照 常规的快速幂写法 会出现问题,即我们无法正确判断 \(a^b\) 在作为下一次运算的指数时和 \(\varphi(p)\) 之间的大小关系,这就需要我们额外在快速幂的过程中判断 \(a^b\) 和 \(\varphi(p)\) 之间的大小关系。

  • 在这里可以使用 __int128_t 来代替实现高精度的快速幂。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll __int128_t
#define sort stable_sort
#define endl '\n'
ll a[1300000];
ll read()
{
ll x=0,f=1;
char c=getchar();
while(c>'9'||c<'0')
{
if(c=='-')
{
f=-1;
}
c=getchar();
}
while('0'<=c&&c<='9')
{
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
ll phi(ll n)
{
ll ans=n,i;
for(i=2;i<=sqrtl(n);i++)//因为使用了__int128_t,为防止CE便使用了sqrtl,亦可以写成i*i<=n的形式
{
if(n%i==0)
{
ans=ans/i*(i-1);
while(n%i==0)
{
n/=i;
}
}
}
if(n>1)
{
ans=ans/n*(n-1);
}
return ans;
}
ll qpow(ll a,ll b,ll p)
{
ll ans=1;
while(b)
{
if(b&1)
{
ans=ans*a;
if(ans>=p)//快速幂特殊处理1
{
ans=ans%p+p;
}
}
b>>=1;
a=a*a;
if(a>=p)//快速幂特殊处理2
{
a=a%p+p;
}
}
return ans;
}
ll f(ll i,ll n,ll p)
{
return (i==n+1||p==1)?1:qpow(a[i],f(i+1,n,phi(p)),p);//对幂塔进行递归
}
int main()
{
ll n,i,p=10007;
n=read();
for(i=1;i<=n;i++)
{
a[i]=read();
}
printf("%lld\n",f(1,n,p)%p);//因为最后结果小于10007,所以可以放心大胆地当作long long输出
return 0;
}

P1405 苦恼的小明 题解的更多相关文章

  1. 洛谷——P1405 苦恼的小明

    P1405 苦恼的小明 题目描述 黄小明和他的合伙人想要创办一所英语培训机构,注册的时候要填一张个人情况的表格,在身高一栏小明犯了愁. 身高要求精确到厘米,但小明实在太高了,无法在纸上填下这么长的数字 ...

  2. 洛谷 P1405 苦恼的小明

    P1405 苦恼的小明 题目描述 黄小明和他的合伙人想要创办一所英语培训机构,注册的时候要填一张个人情况的表格,在身高一栏小明犯了愁. 身高要求精确到厘米,但小明实在太高了,无法在纸上填下这么长的数字 ...

  3. luogu P1405 苦恼的小明(欧拉定理)

    题意 求a1^a2^a3^...^an(mod10007)n<=1000000,a[i]<=10000 题解 明眼人一眼就可以看出是欧拉定理的推论. 首先这个题是错的,没说保证互质. 然而 ...

  4. BZOJ2464: 中山市选[2009]小明的游戏

    2464: 中山市选[2009]小明的游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 280  Solved: 124[Submit][Statu ...

  5. 小明系列问题——小明序列(Lis 相距大于d的单调上升子序列)

    小明系列问题——小明序列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  6. hunnu11543:小明的烦恼——分糖果

    Problem description   小明在班里一直是个非常公正的孩子.这点同学和老师都非常清楚,这不,老师每周都会从家里带来一些糖果.然后叫小明把糖果分给其它小朋友,但这个班里的同学都有一个非 ...

  7. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  8. JustOj 1936: 小明A+B

    题目描述 小明今年3岁了, 现在他已经能够认识100以内的非负整数, 并且能够进行100以内的非负整数的加法计算. 对于大于等于100的整数, 小明仅保留该数的最后两位进行计算, 如果计算结果大于等于 ...

  9. HDU4511 小明系列故事——女友的考验 —— AC自动机 + DP

    题目链接:https://vjudge.net/problem/HDU-4511 小明系列故事——女友的考验 Time Limit: 500/200 MS (Java/Others)    Memor ...

  10. bzoj2464: 中山市选[2009]小明的游戏(最短路)

    2464: 中山市选[2009]小明的游戏 题目:传送门 题解: 最短路的裸题... 代码: #include<cstdio> #include<cstring> #inclu ...

随机推荐

  1. zzuli1895: 985的0-1串难题

    //解法:用二分查找,如果当前位置是'1',则查找比这个位置多k+1个零的位置,如果当前位置是'0',则查找比当前位置多k个零的位置, 注意要在末尾添个最大的值 #include<iostrea ...

  2. Kubernetes: client-go 源码剖析(二)

    kubernetes:client-go 系列文章: Kubernetes: client-go 源码剖析(一) Kubernetes: client-go 源码剖析(二) 2.3 运行 inform ...

  3. context 从入门到深入了解

    1. 前言 在 Go 语言中,上下文 context.Context 用来设置截止日期,同步信号,传递值的功能,它与 goroutine 关系密切,被用来解决 goroutine 之间 退出通知,元数 ...

  4. Introduction to DFT

    服务器使用 登陆服务器:输入账号密码 打开terminal,保证至少一个terminal窗口是打开的 取消Linux操作系统的屏幕保护 设置Linux EDA工具配置 // 自定义环境变量设置 gvi ...

  5. SD Host控制器的datasheet

    SD-Host控制器的datasheet更多的是给嵌入式软件工作人员使用,datasheet中主要包含一些寄存器以及读写擦除流程 寄存器主要有: 控制寄存器 状态寄存器 配置寄存器 软件和硬件进行交互 ...

  6. Oracle12c On 银河麒麟v10SP3 的安装过程

    Oracle12c On 银河麒麟的安装过程 学习官网资料 下载最新版的preinstall文件 https://yum.oracle.com/repo/OracleLinux/OL8/appstre ...

  7. [转帖]TIDB-Error 1105: Out Of Memory Quota问题解决

    一.背景 复杂sql查询报错 二.原因 单条s q l使用内存默认为1G 三.解决 tiup cluster edit_config tidb-test server_configs: tidb: m ...

  8. Python学习之六_同时访问Oracle和Mysql的方法

    Python学习之六_同时访问Oracle和Mysql的方法 背景 jaydebeapi 可以访问大部分数据库. 但是他有一个问题是仅能够访问一种类型的数据库. 如果同事连接两种数据库,那么就会出现问 ...

  9. redis-shake

    https://github.com/alibaba/RedisShake/wiki/%E8%BF%90%E8%A1%8C%E7%9B%91%E6%8E%A7 redis-shake is a too ...

  10. 将自签名创建的ca证书 添加到linux的授信证书列表的办法

    第一步: 将ca 证书 从cert 格式转换成pem格式 openssl x509 -in ca.crt -out ca.pem -outform PE 第二步: 将ca 证书导入至系统中来 cat ...