今天太悲惨了qaq

考试概况:

总之疯狂挂分(((

根据题目说的四个算法,猜想每个算法按顺序对应一道题。

\(T1\) 看起来不难,数据范围小,感觉应该就是把地图拆成四块来递归计算答案,不过分类讨论属实恶心写了一个小时过掉了样例和几组手造数据(

\(T2\) (根据题目)应该是二分,但是没想出来,取模了还咋二分啊qaq 顺手打了 \(20pts\) 暴力去看下一题。

\(T3\) 想到 bfs 出所有可能路径长度并倍增求答案,看了样例发现如果遇到环会死循环。思考无果,打了 \(3,4\) 两个测试点不存在环的部分分。

\(T4\) 明显是递推加矩阵快速幂优化,可惜递推方程乱搞了好久没整出来,写了只有 \(w_1>0\) 的情况。

期望分数: \(100+20+20+20=160pts\)

实际分数: \(0+20+20+10=50pts\)

赛后总结:

成绩一发直接给我整懵了,不是,这啥情况。。。

对着数据查了好半天才发现自己的递归函数里分类讨论在开口朝上时的第一和第四种情况写反了/ll

改过来也只有 \(30pts\) ,然后又发现只在 \(3\) 阶及以下的图里满足的一些规律在更高阶里面其实是错的,也就是做法假了QAQ

\(T4\) 一块也不切其实也算一种情况,所以算的答案少了 \(1\) 成功挂掉,主要问题是读题不认真,样例里明明都写着了。。。

经验: 以后考试一定要认真读题,不稳的题自己多手造几组数据检查一下QAQ

8.13 分治&二分&倍增&快速幂模拟赛总结的更多相关文章

  1. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

  2. 牛客网练习赛44-B(快速幂+模拟)

    题目链接:https://ac.nowcoder.com/acm/contest/548/B 题意:计算m/n小数点后k1位到k2位,1≤m≤n≤109,1<=k1<=k2<=109 ...

  3. POJ3233Matrix Power Series(十大矩阵问题之三 + 二分+矩阵快速幂)

    http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total ...

  4. 欧几里得算法(及扩展)&&快速幂(二分+位运算)

    最近在二中苦逼地上课,天天听数论(当然听不懂) 但是,简单的还是懂一点的 1.欧几里得算法 说得这么高级干什么,gcd入门一个月的人都会吧,还需要BB? 证明可参照其他博客(不会),主要就是gcd(a ...

  5. Poj 3233 Matrix Power Series(矩阵二分快速幂)

    题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k ...

  6. BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)

    BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...

  7. [NOIP2003普及组]麦森数(快速幂+高精度)

    [NOIP2003普及组]麦森数(快速幂+高精度) Description 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998 ...

  8. 2018.11.08 NOIP模拟 景点(倍增+矩阵快速幂优化dp)

    传送门 首先按照题意构造出转移矩阵. 然后可以矩阵快速幂求出答案. 但是直接做是O(n3qlogm)O(n^3qlogm)O(n3qlogm)的会TTT掉. 观察要求的东西发现我们只关系一行的答案. ...

  9. [Bzoj4722]由乃(线段树好题)(倍增处理模数小快速幂)

    4722: 由乃 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 360  Solved: 131[Submit][Status][Discuss] D ...

  10. 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】

    目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...

随机推荐

  1. 加密流量识别检测(一)——在VM虚拟机上搭建指定拓扑

  2. 在行情一般的情况下,就说说23级应届生如何找java工作

    Java应届生找工作,不能单靠背面试题,更不能在简历中堆砌和找工作关系不大的校园实践经历,而是更要在面试中能证明自己的java相关商业项目经验.其实不少应届生Java求职者不是说没真实Java项目经验 ...

  3. MAUI+MASA Blazor 兼容性测试报告及分析

    目录 1. 背景 2. 目的 3. 测试目标 4. 预期结果 5. 测试策略及范围 6. 测试结果与分析 7. 附加内容 8. 结尾 1. 背景 MASA Blazor组件是一款基于Material ...

  4. snmptt解析中文trap消息

    项目中使用了中国电信系统集成公司的虚拟化平台,为通过zabbix监控,接收HyperCenter发送的告警,需要将trap消息中的汉语编码转译.网络上snmptt资料不多,官网文档也不甚友好,通过参考 ...

  5. 如何在Avalonia11中设置自定义字体

    如何在Avalonia11中设置自定义字体 由于avalonia默认的中文字体显示的效果不太理想,我们需要下载一些自定义的字体,来优化UI的显示效果.avalonia的官方文档地址. 对我在项目中运用 ...

  6. linux文本编辑YCM报错

    linux文本编辑YCM报错 刚从github安装了vimplus,可是发现存在不少的问题.索性给直接记录一下. The ycmd server SHUT DOWN (restart with ':Y ...

  7. html中的一些常用标签与标签属性

    label for属性 定义和用法 for 属性规定 label 与哪个表单元素绑定. <span> <label for="username">用户账号& ...

  8. 给你推荐一款快速通过 typescript 生成 jsonschema 的包处理器

    theme: github fast-typescript-to-jsonschema Typescript 生成 jsonschema 数据插件 性能 案例 interface AAA { a: n ...

  9. @ControllerAdvice 注解使用及原理探究

    最近在新项目的开发过程中,遇到了个问题,需要将一些异常的业务流程返回给前端,需要提供给前端不同的响应码,前端再在次基础上做提示语言的国际化适配.这些异常流程涉及业务层和控制层的各个地方,如果每个地方都 ...

  10. 修改启动配置文件更改root密码

    第二种:修改启动配置文件 (1)进入救援模式 开机选择第一个系统内核,键入e (2)修改配置文件 将光标移动linux 开始的行,添加内核参数 rd.break 按ctrl-x启动 光标放在linux ...