基础知识

内核

操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。

内核空间&用户空间

为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操心系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。针对linux操作系统而言,将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF),供内核使用,称为内核空间,而将较低的3G字节(从虚拟地址0x00000000到0xBFFFFFFF),供各个进程使用,称为用户空间。

缓存IO

文件和流

不管socket,还是FIFO、管道、终端,对我们来说,一切都是文件,一切都是二进制流。在信息交换的过程中,我们都是对这些流进行数据的收发操作,简称为I/O操作(input and output),,往流中读出数据,系统调用read,写入数据,系统调用write。

文件描述符

计算机里有这么多的流,我怎么知道要操作哪个流呢?对,就是文件描述符,即通常所说的fd,一个fd就是一个整数,所以,对这个整数的操作,就是对这个文件(流)的操作。我们创建一个socket,通过系统调用会返回一个文件描述符,那么剩下对socket的操作就会转化为对这个描述符的操作。

思想:这又是一种分层和抽象的思想

I/O模型

同步阻塞 I/O(blocking IO)

  • 当用户进程调用了recvfrom等阻塞方法时,内核进入IO的第1个阶段:准备数据(内核需要等待足够的数据再拷贝)这个过程需要等待,用户进程会被阻塞,等内核将数据准备好,然后拷贝到用户地址空间,内核返回结果,用户进程才从阻塞态进入就绪态
  • Linux中默认情况下所有的socket都是阻塞的

同步阻塞IO模型是最简单的IO模型,用户线程在内核进行IO操作时被阻塞。如图1所示,用户线程通过系统调用read发起IO读操作,由用户空间转到内核空间。内核等到数据包到达后,然后将接收的数据拷贝到用户空间,完成read操作。

即用户需要等待read将socket中的数据读取到buffer后,才继续处理接收的数据。整个IO请求的过程中,用户线程是被阻塞的,这导致用户在发起IO请求时,不能做任何事情,对CPU的资源利用率不够。

同步非阻塞 I/O(blocking IO)

当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。

用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作

一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回

非阻塞IO模式下用户进程需要不断地询问内核的数据准备好了没有

同步非阻塞IO是在同步阻塞IO的基础上,将socket设置为NONBLOCK。这样做用户线程可以在发起IO请求后可以立即返回。如图2所示,由于socket是非阻塞的方式,因此用户线程发起IO请求时立即返回。但并未读取到任何数据,用户线程需要不断地发起IO请求,直到数据到达后,才真正读取到数据,继续执行。

即用户需要不断地调用read,尝试读取socket中的数据,直到读取成功后,才继续处理接收的数据。整个IO请求的过程中,虽然用户线程每次发起IO请求后可以立即返回,但是为了等到数据,仍需要不断地轮询、重复请求,消耗了大量的CPU的资源。一般很少直接使用这种模型,而是在其他IO模型中使用非阻塞IO这一特性。

I/O 多路复用( IO multiplexing)

通过一种机制,一个进程可以监视多个文件描述符(套接字描述符)一旦某个文件描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作(这样就不需要每个用户进程不断的询问内核数据准备好了没)

常用的IO多路复用方式有select、poll和epoll

select不会告诉用户进程哪个文件描述符可以用,而且数量限制1024。

poll和select类似,只不过不限制数量啦。

epoll方式不限制数量的前提下,还会通知用户进程哪些文件描述符里有数据,直接返回。是一种那空间换时间的方式。

IO多路复用模型是建立在内核提供的多路分离函数select基础之上的,使用select函数可以避免同步非阻塞IO模型中轮询等待的问题。

如图3所示,用户首先将需要进行IO操作的socket添加到select中,然后阻塞等待select系统调用返回。当数据到达时,socket被激活,select函数返回。用户线程正式发起read请求,读取数据并继续执行。

从流程上来看,使用select函数进行IO请求和同步阻塞模型没有太大的区别,甚至还多了添加监视socket,以及调用select函数的额外操作,效率更差。但是,使用select以后最大的优势是用户可以在一个线程内同时处理多个socket的IO请求。用户可以注册多个socket,然后不断地调用select读取被激活的socket,即可达到在同一个线程内同时处理多个IO请求的目的。而在同步阻塞模型中,必须通过多线程的方式才能达到这个目的。

IO多路复用模型(Reactor)

然而,使用select函数的优点并不仅限于此。虽然上述方式允许单线程内处理多个IO请求,但是每个IO请求的过程还是阻塞的(在select函数上阻塞),平均时间甚至比同步阻塞IO模型还要长。如果用户线程只注册自己感兴趣的socket或者IO请求,然后去做自己的事情,等到数据到来时再进行处理,则可以提高CPU的利用率。

如图5所示,通过Reactor的方式,可以将用户线程轮询IO操作状态的工作统一交给handle_events事件循环进行处理。用户线程注册事件处理器之后可以继续执行做其他的工作(异步),而Reactor线程负责调用内核的select函数检查socket状态。当有socket被激活时,则通知相应的用户线程(或执行用户线程的回调函数),执行handle_event进行数据读取、处理的工作。由于select函数是阻塞的,因此多路IO复用模型也被称为异步阻塞IO模型。注意,这里的所说的阻塞是指select函数执行时线程被阻塞,而不是指socket。一般在使用IO多路复用模型时,socket都是设置为NONBLOCK的,不过这并不会产生影响,因为用户发起IO请求时,数据已经到达了,用户线程一定不会被阻塞。

IO多路复用是最常使用的IO模型,但是其异步程度还不够“彻底”,因为它使用了会阻塞线程的select系统调用。因此IO多路复用只能称为异步阻塞IO,而非真正的异步IO。

信号驱动 I/O( signal driven IO)

内核文件描述符就绪后,通过信号通知用户进程,用户进程再通过系统调用读取数据。

此方式属于同步IO(实际读取数据到用户进程缓存的工作仍然是由用户进程自己负责的)

异步 I/O(asynchronous IO)

用户进程发起read操作之后,立刻就可以开始去做其它的事。内核收到一个异步IO read之后,会立刻返回,不会阻塞用户进程。

内核会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,内核会给用户进程发送一个signal告诉它read操作完成了

如图7所示,异步IO模型中,用户线程直接使用内核提供的异步IO API发起read请求,且发起后立即返回,继续执行用户线程代码。不过此时用户线程已经将调用的AsynchronousOperation和CompletionHandler注册到内核,然后操作系统开启独立的内核线程去处理IO操作。当read请求的数据到达时,由内核负责读取socket中的数据,并写入用户指定的缓冲区中。最后内核将read的数据和用户线程注册的CompletionHandler分发给内部Proactor,Proactor将IO完成的信息通知给用户线程(一般通过调用用户线程注册的完成事件处理函数),完成异步IO。

相比于IO多路复用模型,异步IO并不十分常用,不少高性能并发服务程序使用IO多路复用模型+多线程任务处理的架构基本可以满足需求。况且目前操作系统对异步IO的支持并非特别完善,更多的是采用IO多路复用模型模拟异步IO的方式(IO事件触发时不直接通知用户线程,而是将数据读写完毕后放到用户指定的缓冲区中)。Java7之后已经支持了异步IO,感兴趣的读者可以尝试使用。

一文搞懂I/O模型的更多相关文章

  1. (四) 一文搞懂 JMM - 内存模型

    4.JMM - 内存模型 1.JMM内存模型 JMM与happen-before 1.可见性问题产生原因 下图为x86架构下CPU缓存的布局,即在一个CPU 4核下,L1.L2.L3三级缓存与主内存的 ...

  2. 基础篇|一文搞懂RNN(循环神经网络)

    基础篇|一文搞懂RNN(循环神经网络) https://mp.weixin.qq.com/s/va1gmavl2ZESgnM7biORQg 神经网络基础 神经网络可以当做是能够拟合任意函数的黑盒子,只 ...

  3. 一文搞懂RAM、ROM、SDRAM、DRAM、DDR、flash等存储介质

    一文搞懂RAM.ROM.SDRAM.DRAM.DDR.flash等存储介质 存储介质基本分类:ROM和RAM RAM:随机访问存储器(Random Access Memory),易失性.是与CPU直接 ...

  4. 一文搞懂 Prometheus 的直方图

    原文链接:一文搞懂 Prometheus 的直方图 Prometheus 中提供了四种指标类型(参考:Prometheus 的指标类型),其中直方图(Histogram)和摘要(Summary)是最复 ...

  5. Web端即时通讯基础知识补课:一文搞懂跨域的所有问题!

    本文原作者: Wizey,作者博客:http://wenshixin.gitee.io,即时通讯网收录时有改动,感谢原作者的无私分享. 1.引言 典型的Web端即时通讯技术应用场景,主要有以下两种形式 ...

  6. 一文搞懂vim复制粘贴

    转载自本人独立博客https://liushiming.cn/2020/01/18/copy-and-paste-in-vim/ 概述 复制粘贴是文本编辑最常用的功能,但是在vim中复制粘贴还是有点麻 ...

  7. 三文搞懂学会Docker容器技术(中)

    接着上面一篇:三文搞懂学会Docker容器技术(上) 6,Docker容器 6.1 创建并启动容器 docker run [OPTIONS] IMAGE [COMMAND] [ARG...] --na ...

  8. 三文搞懂学会Docker容器技术(下)

    接着上面一篇:三文搞懂学会Docker容器技术(上) 三文搞懂学会Docker容器技术(中) 7,Docker容器目录挂载 7.1 简介 容器目录挂载: 我们可以在创建容器的时候,将宿主机的目录与容器 ...

  9. 一文搞懂所有Java集合面试题

    Java集合 刚刚经历过秋招,看了大量的面经,顺便将常见的Java集合常考知识点总结了一下,并根据被问到的频率大致做了一个标注.一颗星表示知识点需要了解,被问到的频率不高,面试时起码能说个差不多.两颗 ...

  10. 一文搞懂 js 中的各种 for 循环的不同之处

    一文搞懂 js 中的各种 for 循环的不同之处 See the Pen for...in vs for...of by xgqfrms (@xgqfrms) on CodePen. for &quo ...

随机推荐

  1. SpringBoot 连接Oracle 12c 以上版本PDB的解决思路

    1. 最近公司产品改用springboot开发, 要支持企业级大型数据库Oracle ,并且版本要求比较高,需要使用Oracle12c以上. 又因为Oracle 12c 以上有了一个PDB的可插拔数据 ...

  2. 【OpenIM原创】简单轻松入门 一文讲解WebRTC实现1对1音视频通信原理

    什么是 WebRTC ? WebRTC(Web Real-Time Communication)是 Google于2010以6829万美元从 Global IP Solutions 公司购买,并于20 ...

  3. 使用C#做为游戏开发的服务器语言方案

    Scut开源服务器 开源C#/Python/Lua 手游服务器 主页:http://www.scutgame.com/index.html 开源:https://github.com/ScutGame ...

  4. 如何区分Unity国内版和国际版

    从这三个地方都可以判断使用的Unity是国内版本还是国际版,国内版的版本号后面会多出c1,而国际版则不会有c1结尾. 安装目录名 unity hub - 安装 - 查看当前安装的Unity各版本 un ...

  5. PGL图学习之图游走类metapath2vec模型[系列五]

    PGL图学习之图游走类metapath2vec模型[系列五] 本项目链接:https://aistudio.baidu.com/aistudio/projectdetail/5009827?contr ...

  6. C++ 通过SQLite实现命令行工具

    本文介绍了一个基于 C++.SQLite 和 Boost 库的简单交互式数据库操作 Shell.该 Shell 允许用户通过命令行输入执行各种数据库操作,包括添加.删除主机信息,设置主机到特定主机组, ...

  7. MySQL 存储过程与函数(精简笔记)

    MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下产品.MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RD ...

  8. 构建LVS负载均衡集群

    LVS即Linux虚拟服务器,目前 LVS 已经被集成到 Linux 内核模块中,该项目在 Linux 内核实现了基于 IP 的数据请求负载均衡调度方案,LVS集群采用IP负载均衡技术和基于内容请求分 ...

  9. C/C++ 关于运算符重载笔记

    加号运算符重载: 重载加号运算符,让 p3 = p1 + p2 改成 p3.mage = p1.mage + p2.mage 实现两个数据成员的相加. 告诉编译器,两个类中的数据成员应该怎么相加. 成 ...

  10. Android 开机流程介绍

    目录 一.目的 二.环境 三.相关概念 3.1 Android平台架构 3.2 Android启动架构 3.3 zImage 3.4 RAMDISK 3.5 RC文件 四.详细设计 4.1 Boot ...