【BZOJ1835】[ZJOI2010]base 基站选址

Description

有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di。需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci。如果在距离第i个村庄不超过Si的范围内建立了一个通讯基站,那么就成它被覆盖了。如果第i个村庄没有被覆盖,则需要向他们补偿,费用为Wi。现在的问题是,选择基站的位置,使得总费用最小。 输入数据 (base.in) 输入文件的第一行包含两个整数N,K,含义如上所述。 第二行包含N-1个整数,分别表示D2,D3,…,DN ,这N-1个数是递增的。 第三行包含N个整数,表示C1,C2,…CN。 第四行包含N个整数,表示S1,S2,…,SN。 第五行包含N个整数,表示W1,W2,…,WN。

Input

输出文件中仅包含一个整数,表示最小的总费用。

Output

3 2 1 2 2 3 2 1 1 0 10 20 30

Sample Input

4

Sample Output

40%的数据中,N<=500;
100%的数据中,K<=N,K<=100,N<=20,000,Di<=1000000000,Ci<=10000,Si<=1000000000,Wi<=10000。

题解:这题如果想不出来的话,多半是设的状态不对,多设几个可能的状态,很容易就能判断出自己设的状态能否转移了。

设f[i][j]表示在第i个村庄建一个基站,已经建了j个基站,此时前i个村庄需要的最少花费(先不考虑对后面的影响)。那么得到转移方程:

$f[i][j]=f[k][j-1]+C[k]+\sum\limits_{l=k+1}^{i-1}W[l][l既不能被i覆盖也不能被j覆盖]$

那么我们如何求出所有满足条件的W[l]之和呢?为了方便,我们先用二分预处理出对于每个l,能覆盖它的,最左边的村庄(记为lm[l])和最右边的村庄(记为rm[l])。那么l不能被k和i覆盖,当且仅当k<lm[l]且rm[l]<i。这就变成了问你一个区间中有多少个线段。我们可以用链表,将所有的l都挂链到rm[l]+1上,那么当i=rm[l]+1时,自然就满足了rm[l]<i的条件。然后我们取出挂在i上的所有l,用线段树,将[1,lm[l]-1]的所有点的f值都+=W[l],也就对应了k<lm[l]的限制。然后我们直接取出线段树中f最小的k来更新f[i][j]就行了。

请注意DP初值的设定!

#include <cstdio>
#include <cstring>
#include <iostream>
#define lson x<<1
#define rson x<<1|1
using namespace std;
typedef long long ll;
const int maxn=20010;
int n,m,cnt,now,ans;
int D[maxn],W[maxn],C[maxn],S[maxn];
int s[maxn<<4],t[maxn<<4],f[2][maxn],lm[maxn],rm[maxn],to[maxn],next[maxn],head[maxn];
void add(int a,int b)
{
to[++cnt]=b,next[cnt]=head[a],head[a]=cnt;
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void build(int l,int r,int x)
{
t[x]=0;
if(l==r)
{
s[x]=f[now][l];
return ;
}
int mid=l+r>>1;
build(l,mid,lson),build(mid+1,r,rson);
s[x]=min(s[lson],s[rson]);
}
void pushdown(int x)
{
if(t[x]) s[lson]+=t[x],s[rson]+=t[x],t[lson]+=t[x],t[rson]+=t[x],t[x]=0;
}
void updata(int l,int r,int x,int a,int b,int c)
{
if(a>b) return ;
if(a<=l&&r<=b)
{
s[x]+=c,t[x]+=c;
return ;
}
pushdown(x);
int mid=l+r>>1;
if(a<=mid) updata(l,mid,lson,a,b,c);
if(b>mid) updata(mid+1,r,rson,a,b,c);
s[x]=min(s[lson],s[rson]);
}
int query(int l,int r,int x,int a,int b)
{
if(a<=l&&r<=b) return s[x];
pushdown(x);
int mid=l+r>>1;
if(b<=mid) return query(l,mid,lson,a,b);
if(a>mid) return query(mid+1,r,rson,a,b);
return min(query(l,mid,lson,a,b),query(mid+1,r,rson,a,b));
}
int main()
{
n=rd(),m=rd();
int i,j,k;
for(i=2;i<=n;i++) D[i]=rd();
for(i=1;i<=n;i++) C[i]=rd();
for(i=1;i<=n;i++) S[i]=rd();
for(i=1;i<=n;i++) W[i]=rd();
int l,r,mid;
for(i=1;i<=n;i++)
{
l=1,r=i;
while(l<r)
{
mid=l+r>>1;
if(D[i]-D[mid]<=S[i]) r=mid;
else l=mid+1;
}
lm[i]=r,l=i+1,r=n+1;
while(l<r)
{
mid=l+r>>1;
if(D[mid]-D[i]<=S[i]) l=mid+1;
else r=mid;
}
rm[i]=l-1,add(rm[i]+1,i);
}
ans=1<<30;
memset(f,0x3f,sizeof(f));
f[0][0]=0,ans=min(ans,f[0][n+1]);
for(j=1;j<=m+1;j++)
{
build(0,n,1),now^=1;
for(i=1;i<=n+1;i++)
{
for(k=head[i];k;k=next[k]) updata(0,n,1,0,lm[to[k]]-1,W[to[k]]);
f[now][i]=query(0,n,1,0,i-1)+C[i];
}
ans=min(ans,f[now][n+1]);
}
printf("%d",ans);
return 0;
}

【BZOJ1835】[ZJOI2010]base 基站选址 线段树+DP的更多相关文章

  1. BZOJ1835: [ZJOI2010]base 基站选址(线段树优化Dp)

    Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄 ...

  2. BZOJ1835: [ZJOI2010]base 基站选址【线段树优化DP】

    Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄 ...

  3. 2018.11.06 bzoj1835: [ZJOI2010]base 基站选址(线段树优化dp)

    传送门 二分出每个点不需要付www贡献的范围,然后可以推出转移式子: f[i][j]=f[i−1][k]+value(k+1,j)+c[i]f[i][j]=f[i-1][k]+value(k+1,j) ...

  4. bzoj1835[ZJOI2010]base基站选址

    据说正解是什么线段树优化DP,但是作为脑子有坑选手,我们需要5k的做法: 主席树+决策单调性..... F[m][i]表示已经放置了m个基站,第m个基站放置在第i个村庄,第i个村庄及之前的村庄的总最少 ...

  5. bzoj1835: [ZJOI2010]base 基站选址

    新的一年新的开始.结果第一题就用了几乎一周.而且感觉很不好. 先检讨自己.最近写的各种数据结构模板基本没打过出来,各种细节崩盘,这题线段树都居然被lazy标记没清零卡挂. DP还是博大精深,这东西感觉 ...

  6. BZOJ 1835: [ZJOI2010]base 基站选址 [序列DP 线段树]

    1835: [ZJOI2010]base 基站选址 题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立 ...

  7. [ZJOI2010]基站选址,线段树优化DP

    G. base 基站选址 内存限制:128 MiB 时间限制:2000 ms 标准输入输出 题目类型:传统 评测方式:文本比较   题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离 ...

  8. bzoj 1835 [ZJOI2010]base 基站选址(DP+线段树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1835 [题意] 有n个村庄,每个村庄位于d[i],要求建立不多于k个基站,在第i个村庄 ...

  9. BZOJ 1835 [ZJOI2010]base 基站选址:线段树优化dp

    传送门 题意 有 $ n $ 个村庄在一排直线上,现在要建造不超过 $ K $ 个通讯基站,基站只能造在村庄处. 第 $ i $ 个村庄距离第 $ 1 $ 个村庄的距离为 $ D_i $ .在此建造基 ...

随机推荐

  1. jquery 中的post和get方法同步问题

    解决方法: 在需要同步的js代码前修改ajax的async属性. 有两种设置方法: 1: $.ajaxSettings.async = false; 2: $.ajaxSetup({ async : ...

  2. C# .NET4.0 改为 到.NET2.0 时 TypedTableBase 报错解决方法

    .NET 4.0 降版本 到.NET 2.0.不出意外,问题必然来了. 编译错误一: 错误 1 命名空间“System”中不存在类型或命名空间名称“Linq”(是缺少程序集引用吗?)解决: 删掉该引用 ...

  3. 横竖屏切换,activity重建问题

    最近有个需求,横屏直播A退出后返回直播列表页B(竖屏)时,在小米8上列表页B直接变成横屏的了,因为列表页B由竖屏切换成横屏了,还会重新执行生命周期onCreate()-onResume()等等. 为了 ...

  4. ()centos6.8安装配置ftp服务器

    ftp传输原理 客户端通过某软件用某个端口(a端口)向服务端发起tcp连接请求,同时告诉服务端客户端另一个空闲端口号(b端口),服务端用21端口与客户端建立一条控制连接通道. 接着在默认情况下,服务端 ...

  5. codevs_1043 方格取数(棋盘DP)

    1043 方格取数 2000年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description ...

  6. OpenSSL使用1(用OpenSSL生成自签名证书在IIS上搭建Https站点)(用于iOS的https访问)

    前提: 先安装openssl,安装有两种方式,第一种直接下载安装包,装上就可运行:第二种可以自己下载源码,自己编译.这里推荐第一种. 安装包:http://slproweb.com/products/ ...

  7. 人生中的那口井 z

    有两个和尚住在隔壁,每天都会在同一时间下山去溪边挑水,不知不觉己经过了五年. 突然有一天,左边这座山的和尚没有下山挑水,过了一个星期,还是没有下山挑水. 直到过了一个月,右边那座山的和尚很担心就去探望 ...

  8. BZOJ 1878 SDOI2009 HH的项链 树状数组/莫队算法

    题目大意:给定一个序列.求一个区间内有多少个不同的数 正解是树状数组 将全部区间依照左端点排序 然后每次仅仅统计左端点開始的每种颜色的第一个数即可了 用树状数组维护 我写的是莫队算法 莫队明显能搞 m ...

  9. Testin云測手游质量管家 七大兵器助CP称霸江湖

    Testin云測手游质量管家 七大兵器助CP称霸江湖 2014/09/29 · Testin · 产品评測 在武侠江湖里,高手不须要武功高强.亦要具备厉害的武器.有人的地方就有江湖.手游行业相同腥风血 ...

  10. XML基础知识学习

    概念: XML 指可扩展标记语言 XML 是一种标记语言,非常类似 HTML ,文本文件. XML 的设计宗旨是数据传输,而非显示数据 .存储和传输复杂的关系模型数据 XML 标签没有被提前定义 使用 ...