【题解】Coins(二进制拆分+bitset)

【vj】

俗话说得好,bitset大法吼啊

这道题要不是他多组数据卡死了我复杂度算出来等于九千多万的选手我还不会想这种好办法233

考虑转移的实质是怎样的,就是对于一个\(dp\)数组表,平移\(val_i \times num_i'\)位然后异或起来,这样就直接bitset开就好了。

背包问题的转移就不说了,优化就是利用二进制来优化,方法就是,我们可以知道所有数都是二进制表示出来的,根据加法交换律以及背包转移的方法,我们从小往大枚举\(2^x\le num_i\),然后把bitset平移\(2^x\)位后异或起来就好了。

但是有个天大的问题就是怎么保证我们的方案合法,也就是说保证我们的方案中不存在硬币用得过多。

实际上直接在循环的时候控制一下就好了,出来的方案就会\(\le num_i\)并且每个组合都会考虑到。

//@winlere
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<bitset> using namespace std; typedef long long ll;
const int maxm=1e5+5;
const int maxn=1e2+5;
int val[maxn],num[maxn];
bitset < maxm > dp; int n,m;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
} int main(){
dp[0]=1;int ans=0;
while(scanf("%d%d",&n,&m),n||m){
for(register int t=1;t<=n;++t) val[t]=qr();
for(register int t=1;t<=n;++t) num[t]=qr();
dp&=1;
for(register int t=1;t<=n;++t){
for(register int i=1;i<=num[t];i<<=1)
if(1ll*i*val[t]<=m) dp|=dp<<(i*val[t]),num[t]-=i;
else num[t]-=i;
if(1ll*num[t]*val[t]<=m) dp|=dp<<(num[t]*val[t]);
}
for(register int t=1;t<=m;++t)
if(dp[t]) ++ans;
printf("%d\n",ans);
ans=0;
}
return 0;
}

【题解】Coins(二进制拆分+bitset)的更多相关文章

  1. poj 1742 Coins(二进制拆分+bitset优化多重背包)

    \(Coins\) \(solution:\) 这道题很短,开门见山,很明显的告诉了读者这是一道多重背包.但是这道题的数据范围很不友好,它不允许我们直接将这一题当做01背包去做.于是我们得想一想优化. ...

  2. hdu 2844 coins(多重背包 二进制拆分法)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  3. BZOJ 2069: [POI2004]ZAW(Dijkstra + 二进制拆分)

    题意 给定一个有 \(N\) 个点 \(M\) 条边的无向图, 每条无向边 最多只能经过一次 . 对于边 \((u, v)\) , 从 \(u\) 到 \(v\) 的代价为 \(a\) , 从 \(v ...

  4. HDU 4135:Co-prime(容斥+二进制拆分)

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  5. 2018.09.08 bzoj1531: [POI2005]Bank notes(二进制拆分优化背包)

    传送门 显然不能直接写多重背包. 这题可以用二进制拆分/单调队列优化(感觉二进制好写). 所谓二进制优化,就是把1~c[i]拆分成20,21,...2t,c[i]−2t+1+1" role= ...

  6. HDU1059 二进制拆分优化多重背包

    /*问你能不能将给出的资源平分成两半,那么我们就以一半为背包,运行多重背包模版 但是注意了,由于个数过大,直接运行会超时,所以要用二进制拆分每种的个数*/ #include<stdio.h> ...

  7. 【最短路】【dijkstra】【二进制拆分】hdu6166 Senior Pan

    题意:给你一张带权有向图,问你某个点集中,两两结点之间的最短路的最小值是多少. 其实就是dijkstra,只不过往堆里塞边的时候,要注意塞进去它是从集合中的哪个起始点过来的,然后在更新某个点的答案的时 ...

  8. 【找规律】【二进制拆分】hdu6129 Just do it

    给你数列a,问你对它作m次求前缀异或和之后的新数列是什么. 考虑a1对最终生成的数列的每一位的贡献,仅仅考虑奇偶性, 当m为2的幂次的时候,恰好是这样的 2^0 1 1 1 1 1 ... 2^1 1 ...

  9. [bzoj4300]绝世好题_二进制拆分

    绝世好题 bzoj-4300 题目大意:题目链接. 注释:略. 想法: 二进制拆分然后用一个数组单独存一下当前答案即可. Code: #include <iostream> #includ ...

随机推荐

  1. windows内核实现的34个关键问题

    http://book.kongfz.com/237217/670391178/#bookComm

  2. 轻松加减你的NSDate值

    废话不多,先上github链接:https://github.com/codegefluester/CGFDateModifier 然后上使用方法代码: NSDate *oneWeekFromNow ...

  3. Oracle 11gR2 RAC 单网卡 转 双网卡绑定 配置步骤

    之前写过一篇双网卡绑定的文章,如下: Oracle RAC 与 网卡绑定 http://blog.csdn.net/tianlesoftware/article/details/6189639 Ora ...

  4. 使用ssh从外网访问内网

    一.场景如下: 各个角色的对应关系如下: 角色 描述 APP 个人笔记本,属于内网IP sshd server 公网 VPS ( 映射端口: port 2222 ),拥有公网IP ssh client ...

  5. ASP.NET Web API是如何根据请求选择Action的?[上篇] 【转】

    http://www.cnblogs.com/leo_wl/p/3316548.html ASP.NET Web API是如何根据请求选择Action的?[上篇] Web API的调用请求总是针对定义 ...

  6. 【DQ冰淇淋】—— Babylon 冰淇淋三维互动营销项目总结

    前言:在学习过Babylon.js基础之后,我上手的第一个网页端3D效果制作项目就是‘DQ冰淇淋’.这个小项目应用到了Babylon最基础的知识,既可以选味道,选点心,也可以旋转.倒置冰淇淋,互动起来 ...

  7. 【dubbo】服务提供者运行的三种方式

    [dubbo]服务提供者运行的三种方式 学习了:https://blog.csdn.net/yxwb1253587469/article/details/78712451 1,使用容器: 2,使用自建 ...

  8. 自主研发异步通信框架Minma(支持长连接和短连接)

    Minma是英文Minma Is Not Mina的简称 该框架采用Java NIO的核心技术,实现了基于事件驱动的多线程异步通信框架,支持常见的长连接(腾讯QQ)和短连接(http通信) 对于开发人 ...

  9. maven 配置jetty插件

    <build>        <finalName>shiroweb</finalName>        <plugins>            & ...

  10. project修改时间日历

    视图→甘特图 格式→时间表→右键时间表  详细的日程表,然后双击时间即可