Skiing
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4810   Accepted: 1287   Special Judge

Description

Bessie and the rest of Farmer John's cows are taking a trip this winter to go skiing. One day Bessie finds herself at the top left corner of an R (1 <= R <= 100) by C (1 <= C <= 100) grid of elevations E (-25 <= E <= 25). In order to join FJ and the other cows at a discow party, she must get down to the bottom right corner as quickly as she can by travelling only north, south, east, and west.

Bessie starts out travelling at a initial speed V (1 <= V <= 1,000,000). She has discovered a remarkable relationship between her speed and her elevation change. When Bessie moves from a location of height A to an adjacent location of eight B, her speed is multiplied by the number 2^(A-B). The time it takes Bessie to travel from a location to an adjacent location is the reciprocal of her speed when she is at the first location.

Find the both smallest amount of time it will take Bessie to join her cow friends.

Input

* Line 1: Three space-separated integers: V, R, and C, which respectively represent Bessie's initial velocity and the number of rows and columns in the grid.

* Lines 2..R+1: C integers representing the elevation E of the corresponding location on the grid.

Output

A single number value, printed to two exactly decimal places: the minimum amount of time that Bessie can take to reach the bottom right corner of the grid.

Sample Input

1 3 3
1 5 3
6 3 5
2 4 3

Sample Output

29.00

Hint

Bessie's best route is: 
Start at 1,1 time 0 speed 1 
East to 1,2 time 1 speed 1/16 
South to 2,2 time 17 speed 1/4 
South to 3,2 time 21 speed 1/8 
East to 3,3 time 29 speed 1/4

Source

USACO 2005 October Gold
 #include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=;
const double Max_double=11258999068426240000;
bool exist[maxn][maxn];
struct node{
int x,y;
};
node p;
double dis[maxn][maxn];
int map[maxn][maxn],v,n,m;
int dir[][]={{,-},{,},{,},{-,}};
queue<node>q;
double SPFA(){
p.y=;p.x=;
dis[][]=;exist[][]=true;
q.push(p);
while(!q.empty()){
p=q.front();q.pop();
exist[p.x][p.y]=false;
double k=1.0/(v * pow(, 1.0*(map[][]-map[p.x][p.y])));
for(int i=;i<;i++){
int nex=p.x+dir[i][],ney=p.y+dir[i][];
if(nex>=&&nex<=n&&ney>=&&ney<=m){
if(dis[nex][ney]>dis[p.x][p.y]+k){
dis[nex][ney]=dis[p.x][p.y]+k;
if(exist[nex][ney]==false){
node tmp;
tmp.x=nex;tmp.y=ney;
q.push(tmp);exist[nex][ney]=true;
}
}
}
}
}
return dis[n][m];
}
int main()
{
scanf("%d%d%d",&v,&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
scanf("%d",&map[i][j]);dis[i][j]=Max_double;
}
memset(exist,false,sizeof(exist));
printf("%.2lf\n",SPFA());
return ;
}

注:上面标红色的那个数反正是要开到非常大,我刚开始开了一个15亿左右的数,以为够用了,却总是WA,还找不出错了,造了几组数据也没毛病,后来看了看题解,只是觉得这里稍小了点,其余的感觉差不多。。

思路:很简单,就是我不想翻译英文,看的别人博客里翻译的,才知道了K,之后就是SPFA();

POJ 3037 Skiing的更多相关文章

  1. POJ 3037 Skiing(如何使用SPFA求解二维最短路问题)

    题目链接: https://cn.vjudge.net/problem/POJ-3037 Bessie and the rest of Farmer John's cows are taking a ...

  2. POJ 3037 Skiing(Dijkstra)

    Skiing Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4668   Accepted: 1242   Special ...

  3. POJ - 3037 Skiing SPFA

    Skiing Bessie and the rest of Farmer John's cows are taking a trip this winter to go skiing. One day ...

  4. Skiing POJ 3037 很奇怪的最短路问题

    Skiing POJ 3037 很奇怪的最短路问题 题意 题意:你在一个R*C网格的左上角,现在问你从左上角走到右下角需要的最少时间.其中网格中的任意两点的时间花费可以计算出来. 解题思路 这个需要发 ...

  5. poj—— 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  6. POJ 3037 SPFA

    题意: 思路: 我们可以发现 到每个点的速度是一样的 那这就成水题了-. 裸的SPFA跑一哈 搞定 //By SiriusRen #include <cmath> #include < ...

  7. Skiing(最短路)

    poj——3037 Skiing Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4921   Accepted: 1315 ...

  8. 一步一步深入理解Dijkstra算法

    先简单介绍一下最短路径: 最短路径是啥?就是一个带边值的图中从某一个顶点到另外一个顶点的最短路径. 官方定义:对于内网图而言,最短路径是指两顶点之间经过的边上权值之和最小的路径. 并且我们称路径上的第 ...

  9. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

随机推荐

  1. 如何用VS2017用C++语言写Hello world 程序?

    1,首先,打开VS2017. 2,左上角按文件——新建——项目,或按ctrl+shift+n. 3,按照图片里的选,选完按“确定”. 4,右键“源文件”,再按添加——新建项. 5,剩下的就很简单了,只 ...

  2. pycharm安装 suds模块报错:AttributeError: module 'pip' has no attribute 'main'

    需求:安装suds模块 遇到的问题: 一.报错信息:[file][Default Settint]---Project Interpreter 点击 搜索suds安装模块报错 解决:依据上图提示找到C ...

  3. Create & use FTP service on Ubuntu(在Ubuntu上搭建并使用FTP服务)

    Check if the FTP service has been installed.(检查是否已安装)   Vsftpd --version  If it has not install,Pres ...

  4. LNMP的环境搭建

    新装的Linux 机器,还没有来得及安装网站环境,这篇文章就是记录一下自己安装LNMP的一般步骤. 之前在Laravel视频中看过这段的讲解,后来也试着安装过,基本的命令不算是熟练掌握,所以还要看看之 ...

  5. 【netbeans】【ubuntu】ubuntu netbeans 抗锯齿化修复

    每一个在ubuntu下用netbeans的,都会对它的字体怎么会显示的那么难看表示很不理解.我就是因此几乎没有用netbeans的.   不过今天终于解决问题了,虽然没有eclipse显示的那么漂亮, ...

  6. python学习博客推荐

    https://www.liaoxuefeng.com/

  7. 多本Python极速入门最佳书籍,不可错过的Python学习资料!

    Python作为现在很热门的一门编程语言,介于Python的友好,许多的初学者都将其作为首选,为了帮助大家更好的学习Python,我筛选了2年内优秀的python书籍,个别经典的书籍扩展到5年内.   ...

  8. Python基础-os模块 sys模块

    sys模块 与操作系统交互的一个接口 文件夹相关 os.makedirs('dirname1/dirname2')    可生成多层递归目录 os.removedirs('dirname1')    ...

  9. logging记录了其他操作的问题

    做atm作业的时候,记录转账操作的那个功能的文件里,同时也记录了增加账号和冻结账号的操作 2018-11-28 17:14:51,754 : transfer : INFO : 用户edward向用户 ...

  10. Cplex: MIP Control Callback

    *本文主要记录和分享学习到的知识,算不上原创 *参考文献见链接 之前,我们有简单提到Cplex中的MIP Callback Interface,包括了Informational callback, q ...