Skiing
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4810   Accepted: 1287   Special Judge

Description

Bessie and the rest of Farmer John's cows are taking a trip this winter to go skiing. One day Bessie finds herself at the top left corner of an R (1 <= R <= 100) by C (1 <= C <= 100) grid of elevations E (-25 <= E <= 25). In order to join FJ and the other cows at a discow party, she must get down to the bottom right corner as quickly as she can by travelling only north, south, east, and west.

Bessie starts out travelling at a initial speed V (1 <= V <= 1,000,000). She has discovered a remarkable relationship between her speed and her elevation change. When Bessie moves from a location of height A to an adjacent location of eight B, her speed is multiplied by the number 2^(A-B). The time it takes Bessie to travel from a location to an adjacent location is the reciprocal of her speed when she is at the first location.

Find the both smallest amount of time it will take Bessie to join her cow friends.

Input

* Line 1: Three space-separated integers: V, R, and C, which respectively represent Bessie's initial velocity and the number of rows and columns in the grid.

* Lines 2..R+1: C integers representing the elevation E of the corresponding location on the grid.

Output

A single number value, printed to two exactly decimal places: the minimum amount of time that Bessie can take to reach the bottom right corner of the grid.

Sample Input

1 3 3
1 5 3
6 3 5
2 4 3

Sample Output

29.00

Hint

Bessie's best route is: 
Start at 1,1 time 0 speed 1 
East to 1,2 time 1 speed 1/16 
South to 2,2 time 17 speed 1/4 
South to 3,2 time 21 speed 1/8 
East to 3,3 time 29 speed 1/4

Source

USACO 2005 October Gold
 #include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=;
const double Max_double=11258999068426240000;
bool exist[maxn][maxn];
struct node{
int x,y;
};
node p;
double dis[maxn][maxn];
int map[maxn][maxn],v,n,m;
int dir[][]={{,-},{,},{,},{-,}};
queue<node>q;
double SPFA(){
p.y=;p.x=;
dis[][]=;exist[][]=true;
q.push(p);
while(!q.empty()){
p=q.front();q.pop();
exist[p.x][p.y]=false;
double k=1.0/(v * pow(, 1.0*(map[][]-map[p.x][p.y])));
for(int i=;i<;i++){
int nex=p.x+dir[i][],ney=p.y+dir[i][];
if(nex>=&&nex<=n&&ney>=&&ney<=m){
if(dis[nex][ney]>dis[p.x][p.y]+k){
dis[nex][ney]=dis[p.x][p.y]+k;
if(exist[nex][ney]==false){
node tmp;
tmp.x=nex;tmp.y=ney;
q.push(tmp);exist[nex][ney]=true;
}
}
}
}
}
return dis[n][m];
}
int main()
{
scanf("%d%d%d",&v,&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
scanf("%d",&map[i][j]);dis[i][j]=Max_double;
}
memset(exist,false,sizeof(exist));
printf("%.2lf\n",SPFA());
return ;
}

注:上面标红色的那个数反正是要开到非常大,我刚开始开了一个15亿左右的数,以为够用了,却总是WA,还找不出错了,造了几组数据也没毛病,后来看了看题解,只是觉得这里稍小了点,其余的感觉差不多。。

思路:很简单,就是我不想翻译英文,看的别人博客里翻译的,才知道了K,之后就是SPFA();

POJ 3037 Skiing的更多相关文章

  1. POJ 3037 Skiing(如何使用SPFA求解二维最短路问题)

    题目链接: https://cn.vjudge.net/problem/POJ-3037 Bessie and the rest of Farmer John's cows are taking a ...

  2. POJ 3037 Skiing(Dijkstra)

    Skiing Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4668   Accepted: 1242   Special ...

  3. POJ - 3037 Skiing SPFA

    Skiing Bessie and the rest of Farmer John's cows are taking a trip this winter to go skiing. One day ...

  4. Skiing POJ 3037 很奇怪的最短路问题

    Skiing POJ 3037 很奇怪的最短路问题 题意 题意:你在一个R*C网格的左上角,现在问你从左上角走到右下角需要的最少时间.其中网格中的任意两点的时间花费可以计算出来. 解题思路 这个需要发 ...

  5. poj—— 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  6. POJ 3037 SPFA

    题意: 思路: 我们可以发现 到每个点的速度是一样的 那这就成水题了-. 裸的SPFA跑一哈 搞定 //By SiriusRen #include <cmath> #include < ...

  7. Skiing(最短路)

    poj——3037 Skiing Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4921   Accepted: 1315 ...

  8. 一步一步深入理解Dijkstra算法

    先简单介绍一下最短路径: 最短路径是啥?就是一个带边值的图中从某一个顶点到另外一个顶点的最短路径. 官方定义:对于内网图而言,最短路径是指两顶点之间经过的边上权值之和最小的路径. 并且我们称路径上的第 ...

  9. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

随机推荐

  1. Python——函数入门(二)

    一.函数的参数 我们在定义函数时,可以定义形式参数(简称形参),这些形参的值在函数调用的时候才会确定,形参的值由调用者负责传入. 1.关键字参数 在Python中,函数的参数名并不是没有意义的,在调用 ...

  2. vim 自动补全 颜色设置

    vim 自动补全 颜色设置 hi Pmenu ctermfg=black ctermbg=gray guibg=# hi PmenuSel ctermfg= ctermbg= guibg=# guif ...

  3. c++文件偏移

    #include <iostream> #include <fstream> #include <cassert> using namespace std; int ...

  4. javaweb基础(1)_入门

    一.基本概念 1.1.WEB开发的相关知识 WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. Internet上供外界访问的Web资源分为: 静态web资源( ...

  5. 微信iOS多设备多字体适配方案总结

    一.背景 2014下半年,微信iOS版先后适配iPad, iPhone6/6plus.随着这些大屏设备的登场,部分用户觉得微信的字体太小,但也有很多用户不喜欢太大的字体.为了满足不同用户的需求,我们做 ...

  6. luogu4608 [FJOI2016]所有公共子序列问题

    题目描述: luogu loj 题解: 序列自动机(?)+高精+普及dp. 这个是猫老师的序列自动机(字符串从1开始): ]) { memset(t[n],-,sizeof(t[n])); ;i> ...

  7. [JZOJ] 5837.Omeed

    先摆出来这个式子 \[ score=A\sum S_i+B\sum S_i\times f(i) \] 先研究\(f\)函数(也就是Combo函数) 显然的有 \[ f(i)=P_i(f(i-1)+1 ...

  8. Oracle 数据库常用SQL语句(1)

    一.数据定义语句 CREATE:创建表或其它对象 create database test; //创建test数据库 ),sex )); //创建表 ALTER:修改表或其它对象的结构 )); //为 ...

  9. 如何用纯 CSS 创作一个过山车 loader

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/KBxYZg/ 可交互视频 此视频是 ...

  10. urllib、requests库整理