caffe配置Makefile.config----ubuntu16.04--重点是matlab的编译
来源: http://blog.csdn.net/daaikuaichuan/article/details/61414219
配置Makefile.config(参考:http://blog.csdn.net/autocyz/article/details/51783857 )
折腾到这一步,离成功就不远了,接下来就是配置之前搁置的Makefile.config,进入caffe根目录,使用vim编辑器打开Makefile.config。
在打开的Makefile.config修改如下内容(我自己的配置):
- USE_OPENCV := 1
- USE_LEVELDB := 1
- USE_LMDB := 1
- CUSTOM_CXX := g++
- CUDA_DIR := /usr/local/cuda-7.5
- CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
- -gencode arch=compute_20,code=sm_21 \
- -gencode arch=compute_30,code=sm_30 \
- -gencode arch=compute_35,code=sm_35 \
- -gencode arch=compute_50,code=sm_50 \
- -gencode arch=compute_50,code=compute_50
- BLAS := atlas
- MATLAB_DIR := /home/eric/MATLAB2014/R2014a
- PYTHON_INCLUDE := /usr/include/python2.7 \
- /usr/lib/python2.7/dist-packages/numpy/core/include
- PYTHON_LIB := /usr/local/lib
- WITH_PYTHON_LAYER := 1
- INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
- LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
- BUILD_DIR := build
- DISTRIBUTE_DIR := distribute
9、make所有文件
进入caffe根目录,输入如下命令:
- sudo make clean
- sudo make all -j4
- sudo make test -j4
- sudo make runtest -j4
- sudo make pycaffe -j4
- sudo make matcaffe -j4
在命令行下输入Python,会出现Python的一些信息,然后输入import caffe,没有报错说明配置成功。在命令行下输入matlab,会打开MATLAB软件。
如果前面所有的配置过程都没有问题的话,最后一步应该是不会出错的。至此,caffe所有的配置项都完成了,接下来就可以愉快地使用这个强大的深度学习框架了。
下面的是我的实际用的:
- ## Refer to http://caffe.berkeleyvision.org/installation.html
- # Contributions simplifying and improving our build system are welcome!
- BUILD_PYTHON:=
- BUILD_MATLAB:=
- BUILD_docs:=
- BUILD_SHARELIB:=
- # cuDNN acceleration switch (uncomment to build with cuDNN).
- USE_CUDNN :=
- # CPU-only switch (uncomment to build without GPU support).
- # CPU_ONLY :=
- # uncomment to disable IO dependencies and corresponding data layers
- USE_OPENCV :=
- USE_LEVELDB :=
- USE_LMDB :=
- # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
- # You should not set this flag if you will be reading LMDBs with any
- # possibility of simultaneous read and write
- # ALLOW_LMDB_NOLOCK :=
- # Uncomment if you're using OpenCV 3
- # OPENCV_VERSION := 3
- # To customize your choice of compiler, uncomment and set the following.
- # N.B. the default for Linux is g++ and the default for OSX is clang++
- CUSTOM_CXX := g++
- # CUDA directory contains bin/ and lib/ directories that we need.
- CUDA_DIR := /usr/local/cuda
- # On Ubuntu 14.04, if cuda tools are installed via
- # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
- # CUDA_DIR := /usr
- # CUDA architecture setting: going with all of them.
- # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
- # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
- CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
- -gencode arch=compute_20,code=sm_21 \
- -gencode arch=compute_30,code=sm_30 \
- -gencode arch=compute_35,code=sm_35 \
- -gencode arch=compute_50,code=sm_50 \
- -gencode arch=compute_52,code=sm_52 \
- -gencode arch=compute_60,code=sm_60 \
- -gencode arch=compute_61,code=sm_61 \
- -gencode arch=compute_61,code=compute_61
- # BLAS choice:
- # atlas for ATLAS (default)
- # mkl for MKL
- # open for OpenBlas
- BLAS := atlas
- # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
- # Leave commented to accept the defaults for your choice of BLAS
- # (which should work)!
- BLAS_INCLUDE := /usr/include
- BLAS_LIB := /usr/lib
- # Homebrew puts openblas in a directory that is not on the standard search path
- # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
- # BLAS_LIB := $(shell brew --prefix openblas)/lib
- # This is required only if you will compile the matlab interface.
- # MATLAB directory should contain the mex binary in /bin.
- MATLAB_DIR := /usr/local/MATLAB/R2016b
- # MATLAB_DIR := /Applications/MATLAB_R2012b.app
- # NOTE: this is required only if you will compile the python interface.
- # We need to be able to find Python.h and numpy/arrayobject.h.
- PYTHON_INCLUDE := /usr/include/python2.7 \
- /usr/lib/python2.7/dist-packages/numpy/core/include
- #PYTHON_LIB:=/usr/lib/x86_64-linux-gnu/libpython2.7.so
- # Anaconda Python distribution is quite popular. Include path:
- # Verify anaconda location, sometimes it's in root.
- # ANACONDA_HOME := $(HOME)/anaconda
- # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
- # $(ANACONDA_HOME)/include/python2.7 \
- # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
- # Uncomment to use Python (default is Python )
- # PYTHON_LIBRARIES := boost_python3 python3.5m
- # PYTHON_INCLUDE := /usr/include/python3.5m \
- # /usr/lib/python3.5/dist-packages/numpy/core/include
- # We need to be able to find libpythonX.X.so or .dylib.
- PYTHON_LIB := /usr/lib /usr/local/lib /usr/lib/x86_64-linux-gnu/
- # PYTHON_LIB := $(ANACONDA_HOME)/lib
- # Homebrew installs numpy in a non standard path (keg only)
- # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
- # PYTHON_LIB += $(shell brew --prefix numpy)/lib
- # Uncomment to support layers written in Python (will link against Python libs)
- WITH_PYTHON_LAYER :=
- # Whatever else you find you need goes here.
- INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
- LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
- # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
- # INCLUDE_DIRS += $(shell brew --prefix)/include
- # LIBRARY_DIRS += $(shell brew --prefix)/lib
- # NCCL acceleration switch (uncomment to build with NCCL)
- # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
- # USE_NCCL :=
- # Uncomment to use `pkg-config` to specify OpenCV library paths.
- # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
- # USE_PKG_CONFIG :=
- # N.B. both build and distribute dirs are cleared on `make clean`
- BUILD_DIR := build
- DISTRIBUTE_DIR := distribute
- # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
- # DEBUG :=
- # The ID of the GPU that 'make runtest' will use to run unit tests.
- TEST_GPUID :=
- # enable pretty build (comment to see full commands)
- Q ?= @
- #INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
- INCLUDE_DIRS := $(INCLUDE_DIRS) /usr/local/include /usr/include/hdf5/serial/
- LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
- LIBRARY_DIRS:=$(LIBRARIES_DIRS) /usr/lib/x86_64-linux-gnu/hdf5/serial
- sea@sea-X550JK:~/caffeM/caffe$ ll matlab/+caffe/
- 总用量 76
- drwxrwxr-x 5 sea sea 4096 11月 9 17:26 ./
- drwxrwxr-x 5 sea sea 4096 11月 9 17:26 ../
- -rw-rw-r-- 1 sea sea 2930 11月 9 17:26 Blob.m
- -rw-rw-r-- 1 sea sea 1207 11月 9 17:26 get_net.m
- -rw-rw-r-- 1 sea sea 298 11月 9 17:26 get_solver.m
- drwxrwxr-x 2 sea sea 4096 11月 9 17:26 imagenet/
- -rw-rw-r-- 1 sea sea 1742 11月 9 17:26 io.m
- -rw-rw-r-- 1 sea sea 841 11月 9 17:26 Layer.m
- -rw-rw-r-- 1 sea sea 4912 11月 9 17:26 Net.m
- drwxrwxr-x 2 sea sea 4096 11月 10 19:48 private/
- -rw-rw-r-- 1 sea sea 172 11月 9 17:26 reset_all.m
- -rw-rw-r-- 1 sea sea 393 11月 9 17:26 run_tests.m
- -rw-rw-r-- 1 sea sea 250 11月 9 17:26 set_device.m
- -rw-rw-r-- 1 sea sea 97 11月 9 17:26 set_mode_cpu.m
- -rw-rw-r-- 1 sea sea 97 11月 9 17:26 set_mode_gpu.m
- -rw-rw-r-- 1 sea sea 1872 11月 9 17:26 Solver.m
- drwxrwxr-x 2 sea sea 4096 11月 9 17:26 +test/
- -rw-rw-r-- 1 sea sea 110 11月 9 17:26 version.m
- sea@sea-X550JK:~/caffeM/caffe$
- # /etc/profile: system-wide .profile file for the Bourne shell (sh(1))
- # and Bourne compatible shells (bash(1), ksh(1), ash(1), ...).
- if [ "$PS1" ]; then
- if [ "$BASH" ] && [ "$BASH" != "/bin/sh" ]; then
- # The file bash.bashrc already sets the default PS1.
- # PS1='\h:\w\$ '
- if [ -f /etc/bash.bashrc ]; then
- . /etc/bash.bashrc
- fi
- else
- if [ "`id -u`" -eq 0 ]; then
- PS1='# '
- else
- PS1='$ '
- fi
- fi
- fi
- if [ -d /etc/profile.d ]; then
- for i in /etc/profile.d/*.sh; do
- if [ -r $i ]; then
- . $i
- fi
- done
- unset i
- fi
- export PYTHONPATH=/usr/local:$PYTHONPATH
- export PYTHONPATH=$PYTHONPATH:/home/sea/caffe2/build
- export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
- export PYTHONPATH=/home/sea/caffeM/caffe/python:$PYTHONPATH
- export PATH=$PATH:/home/sea/caffeM/caffe/build/tools/:/usr/local/cuda-8.0/bin
- export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib:$LD_LIBRARY_PATH
- export PYTHONPATH=$PYTHONPATH:/home/sea/caffeM/caffe/python
- export PATH=$PATH:/usr/local/MATLAB/R2016b/bin
- export MATLABDIR=/usr/local/MATLAB/R2016b
- export Matlab_mex=/usr/local/MATLAB/R2016b/bin/mex
- export Matlab_mexext=/usr/local/MATLAB/R2016b/bin/mexext
caffe配置Makefile.config----ubuntu16.04--重点是matlab的编译的更多相关文章
- Ubuntu16.04+cuda9.0+matlab+opencv3.3+caffe服务器配置(问题汇总)
Ubuntu16.04+cuda9.0+matlab+opencv3.3+caffe服务器配置(附遇到的错误和解决方法) 1.具体安装前需要的依赖包: ubuntu dependency: sudo ...
- MySql5.7免安装版配置过程(ubuntu16.04)
MySql5.7免安装版配置过程(ubuntu16.04) 原创 2017年02月07日 16:58:24 标签: 1001 编辑 删除 一.安装环境: 操作系统:ubuntu16.04 数据库:my ...
- Ubuntu16.04下安装MATLAB 2016b!完美运行
目录 1.下载MATLAB 2016b 2.挂载iso 3.安装MATLAB 4.破解 5.快捷键与运行 1.下载MATLAB 2016b 下载matlab 2016b for linux(可以百度搜 ...
- caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于caffe). (亲测有效,记录经历两天的吐血经历)
兜兜转转,兜兜转转; 一次有一次,这次终于把Faster R-CNN 跑通了. 重要提示1:在开始跑Faster R-CNN之前一定要搞清楚用的是Python2 还是Python3. 不然你会无限次陷 ...
- Ubuntu16.04下的modules模块编译加载
一.首先编写对应的驱动程序的相关内容:(最简单的hello.c程序) #include<linux/init.h> #include<linux/module.h> MODUL ...
- caffe学习二:py-faster-rcnn配置运行faster_rcnn_end2end-VGG_CNN_M_1024 (Ubuntu16.04)
本文的主要目的是学习记录. 原文连接:https://blog.csdn.net/samylee/article/details/51099508 本博客中我将对py-faster-rcnn配置运行f ...
- caffe中Makefile.config详解
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improv ...
- 配置YOLO2(ubuntu16.04+cuda8.0+opencv3.1.0)
要求已经安装好了CUDA 8.0 以及OpenCV3.1.0 YOLO官方网站 配置darknet git clone https://github.com/pjreddie/darknet cd d ...
- tensorflow学习笔记一------下载安装,配置环境(基于ubuntu16.04 pycharm)
一,安装TensorFlow 安装所有必备工具 sudo apt-get install python-pip python-dev python-virtualenv 安装TensorFlow su ...
随机推荐
- 【bzoj4128】Matrix 矩阵乘法+Hash+BSGS
题目描述 给定矩阵A,B和模数p,求最小的x满足 A^x = B (mod p) 输入 第一行两个整数n和p,表示矩阵的阶和模数,接下来一个n * n的矩阵A.接下来一个n * n的矩阵B 输出 输出 ...
- 【Luogu】P2473奖励关(期望DP)
题目链接 逆推期望DP.设f[i][j]为1~i-1中吃到的宝物集合为j,在i~k轮能得到的最大期望分数. 如果不吃显然f[i][j]+=f[i+1][j]/n 如果吃就是f[i][j]+=max(f ...
- [luoguP2463] [SDOI2008]Sandy的卡片(后缀数组 + st表)
传送门 很容易想到,题目中的相同是指差分数组相同. 那么可以把差分数组连起来,中间加上一个没有出现过的且字典序小的数 双指针移动,用st表维护height数组中的最小值. 当然用单调队列应该也可以且更 ...
- JDBC链接mysql,时间时0000-00-00 00:00:00时报错
应为mysql默认最小timestamp是0001-01-01 00:00:00,所以查询出来会报错 需要加在链接的url中加入 &zeroDateTimeBehavior=convertTo ...
- 关于cookie使用的一些问题
保存cookie后提取出来发现字符串是被编码过的,需要decodeURIComponent进行下解码才可以 设置cookie setCookie(c_name, value, expiredays) ...
- xsy 1845 - GCD
from NOIP2016模拟题34 Description 给定一个长度\(n\le 10^6\)的序列, 给定\(A, B\) 给出一个序列,要求你通过如下两个操作使得序列中所有数的最大公约数大于 ...
- udp 多播
先来了解下UDP UDP 是UserDatagram Protocol的简称, 中文名是用户数据报协议,是OSI(Open System Interconnection,开放式系统互联) 参考模型中一 ...
- select、poll和epoll的区别(转载)
select,poll,epoll都是IO多路复用的机制.I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作.但select ...
- 致命错误:ext/standard/php_smart_str.h:没有那个文件或目录
致命错误:ext/standard/php_smart_str.h:没有那个文件或目录 参考文章:https://blog.csdn.net/jartins/article/details/80371 ...
- Codeforces 600E Lomsat gelral (树上启发式合并)
题目链接 Lomsat gelral 占坑……等深入理解了再来补题解…… #include <bits/stdc++.h> using namespace std; #define rep ...