牛顿迭代法(Newton's Method)
牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出。可是,这
一方法在牛顿生前并未公开发表(讨厌的数学家们还是鼓捣出来了)
牛顿法的作用是使用迭代的方法来求解函数方程的根。
简单地说,牛顿法就是不断求取切线的过程。
对于形如f(x)=0的方程,首先随意估算一个解x0,再把该预计值代入原方程中。
因为一般不会正好选择到正确的解。所以有f(x)=a。这时计算函数在x0处的斜率,和这条斜率与x轴的交点x1。
f(x)=0中精确解的意义是,当取得解的时候。函数值为零(即f(x)的精确解是函数的零点)。因此,x1比x0更加接近精确的解。仅仅要不断以此方法更新x,就能够取得无限接近的精确的解。
可是,有可能会遇到牛顿迭代法无法收敛的情况。
比方函数有多个零点,或者函数不连续的时候。
牛顿法举例
以下介绍使用牛顿迭代法求方根的样例。牛顿迭代法是已知的实现求方根最快的方法之中的一个,仅仅须要迭代几次后就能得到相当精确的结果。
首先设x的m次方根为a。
以下是matlab的编程:
syms x
f=x^x-10;
df=diff(f,x); eps=1e-6;
x0=10;
cnt=0;
MAXCNT=200; %最大循环次数
while cnt<MAXCNT %防止无限循环
x1=x0-subs(f,x,x0)/subs(df,x,x0); %去掉这个分号,能够看到迭代过程.
if (abs(x1-x0)<eps)
break;
end
x0=x1;
cnt=cnt+1;
end
if cnt==MAXCNT
disp '不收敛'
else
vpa(x1,8)
end
牛顿迭代法(Newton's Method)的更多相关文章
- 牛顿迭代法(Newton's Method)
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根. ...
- 牛顿迭代法(Newton's Method)
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.牛顿法的作用是使用迭代的方法来求解函数方程的根.简单地说,牛顿法就是不断求取切线的过程. ...
- Newton's method Drawback and advantage
Newton Raphson Method: Advantages and Drawbacks: v=QwyjgmqbR9s" target="_blank"& ...
- 牛顿迭代法(Newton's method)
关键词:牛顿法.牛顿迭代法.牛顿切线法.牛顿-拉弗森方法 参考:牛顿迭代法-百度百科.牛顿切线法-百度文库数学学院.牛顿切线法数值分析.非线性方程(组)的数值解法.Latex入门 https://bl ...
- Atitit 迭代法 “二分法”和“牛顿迭代法 attilax总结
Atitit 迭代法 "二分法"和"牛顿迭代法 attilax总结 1.1. ."二分法"和"牛顿迭代法"属于近似迭代法1 1. ...
- Java实现牛顿迭代法求解平方根、立方根
一.简介 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法. ...
- UVA 10428 - The Roots(牛顿迭代法)
UVA 10428 - The Roots option=com_onlinejudge&Itemid=8&page=show_problem&category=494& ...
- 华为OJ1964-求解立方根(牛顿迭代法)
一.题目描述 描述: 计算一个数字的立方根,不使用库函数. 函数原型double getCubeRoot(double input) 输入: 待求解参数 double类型 输出: 输出参数的立方根,保 ...
- 牛顿迭代法解非线性方程组(MATLAB版)
牛顿迭代法,又名切线法,这里不详细介绍,简单说明每一次牛顿迭代的运算:首先将各个方程式在一个根的估计值处线性化(泰勒展开式忽略高阶余项),然后求解线性化后的方程组,最后再更新根的估计值.下面以求解最简 ...
随机推荐
- 【bzoj3251】树上三角形 朴素LCA+暴力
题目描述 给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形.同时还支持单点修改. 输入 第一行两个整数n.q表示树的点数和操 ...
- Code Jam 2017 Round 1A Problem B. Ratatouille
传送门 分析 首先把包(package)的克数 $Q_{ij}$ 转化成区间 $[\lceil Q_{ij}/(1.1 r_i )\rceil, \lfloor Q_{ij}/(0.9 r_i)\rf ...
- [BZOJ4260] Codechef REBXOR (01字典树,异或前缀和)
Description Input 输入数据的第一行包含一个整数N,表示数组中的元素个数. 第二行包含N个整数A1,A2,-,AN. Output 输出一行包含给定表达式可能的最大值. Sample ...
- 欧拉函数之和(51nod 1239)
对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...
- Nginx合并静态资源,以减轻web服务器压力
Nginx concat模块由淘宝开发,并且淘宝已经在使用这个Nginx模块.这个模块类似于apache中的modconcat.如果需要使用它,需要使用两个?问号.Nginx concat通过合并静态 ...
- 【BZOJ1579】Revamping Trails(分层图,最短路,堆)
题意:每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i (1 <= ...
- 【CF676D】Theseus and labyrinth(BFS,最短路)
题意:给定一张N*M的地图,每一格都是一个房间,房间之间有门.每个房间可能有四个门,例如>代表右边只有一个门在右边即只能向右走,L代表左边没有门只能除了左其他都可以走等等.现在给出起点和终点,每 ...
- Android之framework修改底部导航栏NavigationBar动态显示和隐藏
原文链接 http://blog.csdn.net/way_ping_li/article/details/45727335 git diff diff --git a/frameworks/bas ...
- HDU6214 Smallest Minimum Cut
题目链接:HDU6214 留一个链式前向星+Dinic模板(希望不要被某人发现,嘿嘿嘿). #include <cstdio> #include <cstring> #incl ...
- js - 锚点-scrollIntoView()
document.getElementById("view").scrollIntoView(false);