Building Bridges(build)

题目描述

A wide river has nn pillars of possibly different heights standing out of the water. They are arranged in a straight line from one bank to the other. We would like to build a bridge that uses the pillars as support. To achieve this we will select a subset of pillars and connect their tops into sections of a bridge. The subset has to include the first and the last pillar.

The cost of building a bridge section between pillars ii and jj is (hi−hj)2(hi−hj)2 as we want to avoid uneven sections, where hihi is the height of the pillar ii. Additionally, we will also have to remove all the pillars that are not part of the bridge, because they obstruct the river traffic. The cost of removing the i−thi−th pillar is equal to wiwi. This cost can even be negative—some interested parties are willing to pay you to get rid of certain pillars. All the heights hihi and costs wiwi are integers.

What is the minimum possible cost of building the bridge that connects the first and last pillar?

有 n 根柱子依次排列,每根柱子都有一个高度。第 i 根柱子的高度为 hi。

现在想要建造若干座桥,如果一座桥架在第 i 根柱子和第 j根柱子之间,那么需要 (hi−hj)^2 的代价。

在造桥前,所有用不到的柱子都会被拆除,因为他们会干扰造桥进程。第 i 根柱子被拆除的代价为 wi,注意 wi 不一定非负,因为可能政府希望拆除某些柱子。

现在政府想要知道,通过桥梁把第 1 根柱子和第 n 根柱子连接的最小代价。注意桥梁不能在端点以外的任何地方相交。

输入

The first line contains the number of pillars, nn.

The second line contains pillar heights hihi in the order, separated by a space.

The third line contains wiwi in the same order, the costs of removing pillars.

第一行一个正整数 n。

第二行 n 个空格隔开的整数,依次表示h1,h2,⋯,hnh1,h2,⋯,hn。

第三行 n 个空格隔开的整数,依次表示w1,w2,⋯,wnw1,w2,⋯,wn。

输出

Output the minimum cost for building the bridge. Note that it can be negative.

输出一行一个整数表示最小代价,注意最小代价不一定是正数。

样例输入

6
3 8 7 1 6 6
0 -1 9 1 2 0

样例输出

17

提示

Constraints

• 2 <= n <= 10^5

• 0 <= hi <= 10^6

• 0 <= |wi| <= 10^6

Subtask 1 (30 points)

• n <= 1, 000

Subtask 2 (30 points)

• optimal solution includes at most 2 additional pillars (besides the first and last) • |wi| <= 20

Subtask 3 (40 points)

• no additional constraints

来源

ceoi2017 day2


solution

把w前缀和起来

我们可以得到一个n^ 2 DP

把它写成斜率优化的形式

斜率不单调,x不单调。

不会splay,那就cdq分治。

把h排序,然后就是单调的了

构出凸包,斜率优化即可

吐槽:cdq细节真是多

注意算斜率时

有时是+inf (a.x==b.x&&a.y<b.y)

有时是-inf (a.x==b.x&&a.y>b.y)

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define maxn 100005
#define inf 1e18
using namespace std;
int n,num[22][maxn],top;
long long f[maxn];
struct node{
long long id,h,w;
}s[maxn],ss[maxn];
struct po{
long long x,y,id;
}h[maxn],zh[maxn];
void merge(int k,int l,int r){
if(l==r){num[k][l]=l;return;}
int mid=l+r>>1;
merge(k+1,l,mid);merge(k+1,mid+1,r);
int li=l,ri=mid+1;
for(int i=l;i<=r;i++){
if(li>mid){
num[k][i]=num[k+1][ri++];continue;
}
if(ri>r){
num[k][i]=num[k+1][li++];continue;
}
int v1=s[num[k+1][li]].h,v2=s[num[k+1][ri]].h;
if(v1<=v2)num[k][i]=num[k+1][li++];
else num[k][i]=num[k+1][ri++];
}
}
po xl(po a,po b){
po t;t.x=a.x-b.x,t.y=a.y-b.y;
return t;
}
long long cj(po a,po b){
return a.x*b.y-a.y*b.x;
}
void tb(int l,int r){
top=0;
for(int i=l;i<=r;i++){ po now;now.x=s[i].h,now.y=f[s[i].id]+s[i].h*s[i].h-s[i].w;now.id=s[i].id;
while(top>1&&cj(xl(zh[top],zh[top-1]),xl(now,zh[top]))<=0)top--;////
zh[++top]=now;
}
}
double getk(po a,po b){
if(a.x==b.x){
if(a.y>b.y)return -inf;
return inf;
}
double xx=a.x-b.x,yy=a.y-b.y;
return yy/xx;
}
void cdq(int k,int l,int r){
if(l==r)return;
int mid=l+r>>1;
cdq(k+1,l,mid);
for(int i=l;i<=mid;i++)s[i]=ss[num[k+1][i]]; tb(l,mid);
for(int i=mid+1;i<=r;i++)s[i]=ss[num[k+1][i]];
int fs=1;
for(int i=mid+1;i<=r;i++){
while(fs<top&&2*(double)s[i].h>getk(zh[fs],zh[fs+1]))fs++;
int j=zh[fs].id,ii=s[i].id;
f[ii]=min(f[ii],
f[j]+(ss[ii].h-ss[j].h)*(ss[ii].h-ss[j].h)+ss[ii-1].w-ss[j].w
);
}
for(int i=mid+1;i<=r;i++)s[i]=ss[i];
cdq(k+1,mid+1,r);
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)scanf("%lld",&s[i].h);
for(int i=1;i<=n;i++){
scanf("%lld",&s[i].w);
s[i].w+=s[i-1].w;
s[i].id=i;
ss[i]=s[i];
}
merge(1,1,n);
for(int i=2;i<=n;i++)f[i]=inf;
cdq(1,1,n);
cout<<f[n]<<endl;
return 0;
}

ceoi2017 Building Bridges(build)的更多相关文章

  1. Luogu4655 [CEOI2017]Building Bridges

    Luogu4655 [CEOI2017]Building Bridges 有 \(n\) 根柱子依次排列,每根柱子都有一个高度.第 \(i\) 根柱子的高度为 \(h_i\) . 现在想要建造若干座桥 ...

  2. 题解-[CEOI2017]Building Bridges

    [CEOI2017]Building Bridges 有 \(n\) 个桥墩,高 \(h_i\) 重 \(w_i\).连接 \(i\) 和 \(j\) 消耗代价 \((h_i-h_j)^2\),用不到 ...

  3. 洛谷.4655.[CEOI2017]Building Bridges(DP 斜率优化 CDQ分治)

    LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_ ...

  4. [CEOI2017]Building Bridges

    题目 斜率优化思博题,不想写了 之后就一直\(95\)了,于是靠肮脏的打表 就是更新了一下凸壳上二分斜率的写法,非常清爽好写 就当是挂个板子了 #include<algorithm> #i ...

  5. loj#2483. 「CEOI2017」Building Bridges 斜率优化 cdq分治

    loj#2483. 「CEOI2017」Building Bridges 链接 https://loj.ac/problem/2483 思路 \[f[i]=f[j]+(h[i]-h[j])^2+(su ...

  6. HDU 4584 Building bridges (水题)

    Building bridges Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) ...

  7. @loj - 2483@「CEOI2017」Building Bridges

    目录 @desription@ @solution@ @accepted code@ @details@ @another solution@ @another code@ @desription@ ...

  8. loj#2483. 「CEOI2017」Building Bridges(dp cdq 凸包)

    题意 题目链接 Sol \[f[i], f[j] + (h[i] - h[j])^2 + (w[i - 1] - w[j]))\] 然后直接套路斜率优化,发现\(k, x\)都不单调 写个cdq就过了 ...

  9. LOJ 2483: 洛谷 P4655: 「CEOI2017」Building Bridges

    题目传送门:LOJ #2483. 题意简述: 有 \(n\) 个数,每个数有高度 \(h_i\) 和价格 \(w_i\) 两个属性. 你可以花费 \(w_i\) 的代价移除第 \(i\) 个数(不能移 ...

随机推荐

  1. 感谢我的python老师

    Python自动化开发(金角大王版) http://www.cnblogs.com/alex3714/articles/5885096.html

  2. springboot集成shiro的session污染问题

    问题起因是这样的,有两套系统,系统a和系统b.两套系统均使用shiro做的权限管理,之前部署在两台机器上.使用浏览器打开a系统后另开页签打开b系统,互不干扰都能正常使用,后因业务迁移,两套系统部署到了 ...

  3. PAT (Advanced Level) Practise - 1095. Cars on Campus (30)

    http://www.patest.cn/contests/pat-a-practise/1095 Zhejiang University has 6 campuses and a lot of ga ...

  4. java设计模式——单例模式(三)

    容器单例模式 之前学习Structs2,Spring框架时,经常会听到单例,多例.虽然这与单例模式不太一样,但是都很类似.在程序运行的时候,就加载所有的实例,然后用的时候直接取出 看下面代码: /** ...

  5. 使用PinYin4j,获取汉字的拼音字母

    需要导入的文件 <!-- 引入pinyin4J的依赖 --> <dependency> <groupId>com.belerweb</groupId> ...

  6. Java 程序设计总复习题

    Java程序设计总复习题 1.编写一个Java程序在屏幕上输出“你好!”. //programme name Helloworld.java public class Helloworld { pub ...

  7. github相关问题

    一.项目编译打包后生成的dist文件夹后:项目提交到github上dist文件提交不上去. 在.gitignore文件,删除一行 二.更改github的语言属性 .gitattributes文件:若项 ...

  8. 自己写一个Promise

    参考Promise 的  官方规范  https://promisesaplus.com/ Promise 其实就是一个状态机 它只有两种状态变化 pending    =>   fulfill ...

  9. 二、C到C++的升级

    C++ 的加强主要表现在:类型的加强.面向对象支持 1.C++改进 C++更强调语言的实用性,所有的变量都可以再需要使用的时候再定义,C语言中的变量都必须在作用域开始的位置定义 int c = 0; ...

  10. win10.net 安装出问题0x800F70422

    因为安装ooracle数据库的时候需要用到.net但安装的时候出了0x800F70422, 随后就去网上查了下这个错出现的原因,发现是我之前把Windows自带的更新给禁用了 只要把它再开启就行了.