BZOJ1491 [NOI2007]社交网络 【floyd】
题目
在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。
在一个社交圈子里有n个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个n个结点的无向图上,
两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人
之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路
径上的其他结点为s和t的联系提供了某种便利,即这些结点对于s和t之间的联系有一定的重要程度。我们可以通过
统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点A和B之间可能会有
多条最短路径。我们修改重要程度的定义如下:令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s
到t的最短路的数目;则定义

为结点v在社交网络中的重要程度。为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图
,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每
一个结点的重要程度。
输入格式
输入第一行有两个整数n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号
。接下来m行,每行用三个整数a,b,c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有
一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。n≤100;m≤4500
,任意一条边的权值 c 是正整数,满足:1≤c≤1000。所有数据中保证给出的无向图连通,且任意两个结点之间
的最短路径数目不超过 10^10
输出格式
输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。
输入样例
4 4
1 2 1
2 3 1
3 4 1
4 1 1
输出样例
1.000
1.000
1.000
1.000
提示
社交网络如下图所示。

对于 1 号结点而言,只有 2 号到 4 号结点和 4 号到 2 号结点的最短路经过 1 号结点,而 2 号结点和 4 号结
点之间的最短路又有 2 条。因而根据定义,1 号结点的重要程度计算为 1/2 + 1/2 = 1 。由于图的对称性,其他
三个结点的重要程度也都是 1 。
题解
n很小,立刻想到floyd
跑一遍可以求出最短路及路径数
跑第二次可以更新中介点的答案
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 105,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
double d[maxn][maxn],cnt[maxn][maxn],f[maxn];
int n,m;
void floyd(){
REP(k,n) REP(i,n) REP(j,n){
if (i == k || i == j || k == j) continue;
if (d[i][k] + d[j][k] < d[i][j])
d[i][j] = d[i][k] + d[k][j],cnt[i][j] = cnt[i][k] * cnt[k][j];
else if (d[i][k] + d[k][j] == d[i][j])
cnt[i][j] += cnt[i][k] * cnt[k][j];
}
REP(k,n) REP(i,n) REP(j,n){
if (i == k || i == j || k == j) continue;
if (d[i][k] + d[k][j] == d[i][j])
f[k] += cnt[i][k] * cnt[k][j] / cnt[i][j];
}
}
int main(){
n = read(); m = read(); int a,b,v;
fill(d[0],d[0] + maxn * maxn,INF);
REP(i,n) d[i][i] = 0;
while (m--){
a = read(); b = read(); v = read();
d[a][b] = d[b][a] = v; cnt[a][b] = cnt[b][a] = 1;
}
floyd();
REP(i,n) printf("%.3lf\n",f[i]);
return 0;
}
BZOJ1491 [NOI2007]社交网络 【floyd】的更多相关文章
- [BZOJ1491][NOI2007]社交网络 floyd
1491: [NOI2007]社交网络 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2196 Solved: 1170[Submit][Status ...
- BZOJ1491: [NOI2007]社交网络(Floyd 最短路计数)
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2343 Solved: 1266[Submit][Status][Discuss] Descripti ...
- 【BZOJ1491】[NOI2007]社交网络 Floyd
[BZOJ1491][NOI2007]社交网络 Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子 ...
- BZOJ 1491: [NOI2007]社交网络( floyd )
floyd...求最短路时顺便求出路径数. 时间复杂度O(N^3) ------------------------------------------------------------------ ...
- 【Floyd】BZOJ1491: [NOI2007]社交网络
Description Solution n<=100自然联想Floyd 设两个数组d[n][n]存最短距离,t[n][n]存最短路径条数 更新d的时候顺便更新t,乘法原理 if(d[i][ ...
- BZOJ1491: [NOI2007]社交网络
传送门 最短路计数问题.因为数据量非常小($N \leq 100$),所以Floyd随便搞搞就行了. $f[i][j]$表示路径长度,$g[i][j]$表示最短路方案数. 先跑一遍裸的Floyd,然后 ...
- BZOJ1491 [NOI2007]社交网络[最短路计数]
$n$非常的小,结合题目计算式可以想到$O(n^3)$暴枚$s,t,v$,看$v$在不在$s\to t$最短路上($dis_{s,v}+dis_{v,t}=dis_{s,v}$是$v$在两点最短路上的 ...
- 洛谷P2047||bzoj1491 [NOI2007]社交网络
https://www.luogu.org/problemnew/show/P2047 https://www.lydsy.com/JudgeOnline/problem.php?id=1491 也可 ...
- 洛谷——P2047 [NOI2007]社交网络
P2047 [NOI2007]社交网络 $Floyd$,一眼看到就是他(博主是不小心瞄到了这个题的标签吧qwq) 这个题目只要预处理出$S$到$T$的最短路的条数即可,类似$Spfa$的更新方法 如果 ...
随机推荐
- python_13_break
for i in range(5): print('-----------',i) for j in range(5): print(j) if j>2: break####结束当前循环
- Hadoop完全分布式集群环境搭建
1. 在Apache官网下载Hadoop 下载地址:http://hadoop.apache.org/releases.html 选择对应版本的二进制文件进行下载 2.解压配置 以hadoop-2.6 ...
- Sql中的if函数学习
今天,在修改项目bug时遇到一些需要计算的功能实现,虽然可以用java代码写,但是由于时间较为充裕,有尝试用sql写一下,学习到了if函数 , o.containerSendNet),) transi ...
- XML格式与实体类的转换
背景 本人头一回写博客,请大家多多关照.通过读取XML文件获取用户管理权限,其中涉及三部分: 1.XML文件的生成: 2.XML文件的读取: 3.XML文件的保存: 如何做 第一步:自己先将XML文件 ...
- JS控制台的使用
1.快捷键F12可直接进入控制台(或者单机右键->检查)用于bug调试 2.控制台如图: Elements:表示所有的js元素 Console:常用的有如下几个功能: ①console.log: ...
- 火狐IE event和target的兼容
一.event对象 IE 中可以直接使用 window.event 对象,而 FF 中则不可以,解决方法之一如下: var theEvent = window.event || arguments.c ...
- tcl之变量-简单变量
- Dungeon Master(逃脱大师)-BFS
Dungeon Master Description You are trapped in a 3D dungeon and need to find the quickest way out! Th ...
- BFS:HDU-1072-Nightmare
Nightmare Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- vue时时监听input输入框中 输入内容 写法
Vue input 监听 使用 v-on:input="change" 实现即可 App.vue <template> <div> <md-field ...